相關(guān)習(xí)題
 0  233513  233521  233527  233531  233537  233539  233543  233549  233551  233557  233563  233567  233569  233573  233579  233581  233587  233591  233593  233597  233599  233603  233605  233607  233608  233609  233611  233612  233613  233615  233617  233621  233623  233627  233629  233633  233639  233641  233647  233651  233653  233657  233663  233669  233671  233677  233681  233683  233689  233693  233699  233707  266669 

科目: 來源: 題型:解答題

18.已知全集U=R,函數(shù)f(x)=lg(4-x)-$\frac{1}{{\sqrt{x+1}}}$的定義域?yàn)榧螦,集合B={x|-2<x<a}.
(1)求集合∁UA;     
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知圓A:x2+y2=1,圓B:(x-3)2+(y+4)2=10,P是平面內(nèi)一動(dòng)點(diǎn),過P作圓A、圓B的切線,切點(diǎn)分別為D、E,若PE=PD,則P到坐標(biāo)原點(diǎn)距離的最小值為$\frac{8}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.過點(diǎn)M(1,-2)的直線l將圓C:(x-2)2+y2=9分成兩段弧,當(dāng)其中的劣弧最短時(shí),直線l的方程是x+2y+3=0.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,有一壁畫,最高點(diǎn)A處離地面AO=4m,最低點(diǎn)B處離地面BO=2m,觀賞它的C點(diǎn)在過墻角O點(diǎn)與地面成30°角的射線上.
(1)設(shè)點(diǎn)C到墻的距離為x,當(dāng)x=$\sqrt{3}$m時(shí),求tanθ的值;
(2)問C點(diǎn)離墻多遠(yuǎn)時(shí),視角θ最大?

查看答案和解析>>

科目: 來源: 題型:解答題

14.(1)已知a,b是常數(shù),且a>0,b>0,a≠b,x,y∈(0,+∞),且x+y=m.
求證:$\frac{a^2}{x}$+$\frac{b^2}{y}$≥$\frac{{{{(a+b)}^2}}}{m}$,并指出等號(hào)成立的條件;
(2)求函數(shù)f(x)=$\frac{12}{x}$+$\frac{9}{1-3x}$,x∈(0,$\frac{1}{3}$)的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.一個(gè)正三角形等分成4個(gè)全等的小正三角形,將中間的一個(gè)正三角形挖掉(如圖1),再將剩余的每個(gè)正三角形分成4個(gè)全等的小正三角形,并將中間的一個(gè)正三角形挖掉,得圖2,如此繼續(xù)下去…
(1)圖3共挖掉多少個(gè)正三角形?
(2)設(shè)原正三角形邊長為a,第n個(gè)圖形共挖掉多少個(gè)正三角形?這些正三角形面積和為多少?

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知集合A={(x,y)|x2+(y+1)2≤1},B={(x,y)|$\sqrt{3}$x+y=4m},命題P:A∩B=∅,命題q:直線$\frac{x}{2m}$+$\frac{y}{1-m}$=1在兩坐標(biāo)軸上的截距為正.
(1)若命題P為真命題,求實(shí)數(shù)m的取值范圍;
(2)若“p∨q”為真,“p∧q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知等差數(shù)列{an}中,a1=-3,11a5=5a8,前n項(xiàng)和為Sn
(1)求an
(2)當(dāng)n為何值時(shí),Sn最。坎⑶骃n的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知數(shù)列{an}滿足a1=1,an+an+1=($\frac{1}{3}$)n,Sn=a1+3a2+32a3+…+3n-1an,利用類似等比數(shù)列的求和方法,可求得4Sn-3nan=n.

查看答案和解析>>

科目: 來源: 題型:填空題

9.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x≥0\\ y≥0\\ x+2y-6≤0\\ 2x+y-6≤0\end{array}\right.$,則z=|x-1|+|y+2|的取值范圍為[2,6].

查看答案和解析>>

同步練習(xí)冊(cè)答案