相關(guān)習(xí)題
 0  235344  235352  235358  235362  235368  235370  235374  235380  235382  235388  235394  235398  235400  235404  235410  235412  235418  235422  235424  235428  235430  235434  235436  235438  235439  235440  235442  235443  235444  235446  235448  235452  235454  235458  235460  235464  235470  235472  235478  235482  235484  235488  235494  235500  235502  235508  235512  235514  235520  235524  235530  235538  266669 

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=x•|x|-2x.
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)若方程f(x)=m有三個不同實根時,求實數(shù)m的取值范圍;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設(shè)等比數(shù)列{an}的前n項和Sn,若a2015=3S2014+2016,a2014=3S2013+2016,則公比q=( 。
A.2B.1或4C.4D.1或2

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知f(x)=log3($\sqrt{{x}^{2}+1}$-x)+(a+3)x+19,f(10)=8,則f(-10)的值為( 。
A.10B.19C.20D.30

查看答案和解析>>

科目: 來源: 題型:解答題

15.函數(shù)f(x)=Asin(ωx+ϕ)+B的一部分圖象如圖所示,其中A>0,ω>0,|φ|<$\frac{π}{2}$.
(1)求函數(shù)y=f(x)解析式;
(2)求x∈[0,$\frac{π}{2}$]時,函數(shù)y=f(x)的值域;
(3)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

14.(1)計算:${[{{{({3\frac{13}{81}})}^{-3}}}]^{\frac{1}{6}}}$-lg$\frac{1}{100}-{(ln\sqrt{e})^{-1}}$$+{0.1^{-2}}-{(2+\frac{10}{27})^{-\frac{2}{3}}}$$-{(\frac{1}{{2+\sqrt{3}}})^0}$$+{2^{-1-{{log}_2}\frac{1}{6}}}$
(2)已知tan(π-α)=-2; 求sin2(π+α)+sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)的值.

查看答案和解析>>

科目: 來源: 題型:填空題

13.函數(shù)f(x)=sin(ωx+ϕ)$(ω>0,0<ϕ<\frac{π}{2})$,f(0)=$\frac{{\sqrt{2}}}{2}$,且對任意${x_1},{x_2}∈(\frac{π}{2},π)$均滿足$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0({x_1}≠{x_2})$,則ω的取值范圍是$\frac{1}{2}$≤ω≤$\frac{5}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知sinθ+cosθ=$\frac{4}{3}$($\frac{π}{4}$<θ<$\frac{π}{2}$),則cosθ-sinθ的值為( 。
A.$\frac{{\sqrt{2}}}{3}$B.$-\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=sin(2x+$\frac{π}{4}$)+1.
(1)用“五點法”作出f(x)在$x∈[-\frac{π}{8},\frac{7π}{8}]$上的簡圖;
(2)寫出f(x)的對稱中心以及單調(diào)遞增區(qū)間;
(3)求f(x)的最大值以及取得最大值時x的集合.

查看答案和解析>>

科目: 來源: 題型:解答題

10.設(shè)sinα+cosα=$\frac{1}{3}$,α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求sin3α-cos3α的值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知0<α<$\frac{π}{2}$,cos(2π-α)-sin(π-α)=-$\frac{\sqrt{5}}{5}$
(1)求sinα+cosα的值;
(2)求$\frac{{{{cos}^2}(\frac{3π}{2}+α)+2cosαcos(\frac{π}{2}-α)}}{{1+{{sin}^2}(\frac{π}{2}-α)}}$的值.

查看答案和解析>>

同步練習(xí)冊答案