相關(guān)習(xí)題
 0  236662  236670  236676  236680  236686  236688  236692  236698  236700  236706  236712  236716  236718  236722  236728  236730  236736  236740  236742  236746  236748  236752  236754  236756  236757  236758  236760  236761  236762  236764  236766  236770  236772  236776  236778  236782  236788  236790  236796  236800  236802  236806  236812  236818  236820  236826  236830  236832  236838  236842  236848  236856  266669 

科目: 來源: 題型:選擇題

15.已知點(diǎn)A是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a,b>0)右支上一點(diǎn),F(xiàn)是右焦點(diǎn),若△AOF(O是坐標(biāo)原點(diǎn))是等邊三角形,則該雙曲線離心率e為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.等比數(shù)列{an}前n項(xiàng)和為Sn,若S2=6,S4=30,則S6=( 。
A.62B.64C.126D.128

查看答案和解析>>

科目: 來源: 題型:選擇題

13.我國古代有著輝煌的數(shù)學(xué)研究成果.《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、…、《輯古算經(jīng)》等算經(jīng)10部專著,有著十分豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn).這10部專著中有7部產(chǎn)生于魏晉南北朝時(shí)期.某中學(xué)擬從這10部名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部名著中至少有一部是魏晉南北朝時(shí)期的名著的概率為( 。
A.$\frac{14}{15}$B.$\frac{13}{15}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知$f(x)=\left\{\begin{array}{l}f(x+1),(x<1)\\{3^x}\;,\;\;(x≥1)\end{array}\right.$,則f(-1+log35)=( 。
A.15B.$\frac{5}{3}$C.5D.$\frac{1}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知復(fù)數(shù)z=(t-1)+(t+1)i,t∈R,|z|的最小值是( 。
A.1B.2C.$\sqrt{2}$D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知集合P={x∈R|0≤x≤3},Q={x∈R|x2≥4},則P∩(∁RQ)=( 。
A.[0,3]B.(0,2]C.[0,2)D.(0,3]

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)$f(x)=-aln(x+1)+\frac{a+1}{x+1}-a-1$(a∈R)
(1)討論f(x)在(0,+∞)上的單調(diào)性;
(2)若對(duì)任意的正整數(shù)n都有${(1+\frac{1}{n})^{n-a}}>e$成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,在△ABC中,AB=2,cosB=$\frac{1}{3}$,點(diǎn)D在線段BC上.
(1)若∠ADC=$\frac{3}{4}$π,求AD的長;
(2)若BD=2DC,△ADC的面積為$\frac{4}{3}$$\sqrt{2}$,求$\frac{sin∠BAD}{sin∠CAD}$的值.

查看答案和解析>>

科目: 來源: 題型:填空題

7.若圓${C_1}:{x^2}+{y^2}+ax=0$與圓${C_2}:{x^2}+{y^2}+2ax+ytanθ=0$都關(guān)于直線2x-y-1=0對(duì)稱,則sinθcosθ=-$\frac{2}{5}$,.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知Sn為數(shù)列{an}的前n項(xiàng)和,$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{{{a_{n-1}}}}{n}={a_n}-2(n≥2)$且a1=2.則{an}的通項(xiàng)公式為an=n+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案