相關(guān)習(xí)題
 0  238306  238314  238320  238324  238330  238332  238336  238342  238344  238350  238356  238360  238362  238366  238372  238374  238380  238384  238386  238390  238392  238396  238398  238400  238401  238402  238404  238405  238406  238408  238410  238414  238416  238420  238422  238426  238432  238434  238440  238444  238446  238450  238456  238462  238464  238470  238474  238476  238482  238486  238492  238500  266669 

科目: 來(lái)源: 題型:填空題

12.在直角坐標(biāo)系中,點(diǎn)A(1,2),點(diǎn)B(3,1)到直線L的距離分別為1和2,則符合條件的直線條數(shù)為2.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.已知函數(shù)$f(x)=cos(\sqrt{3}x+ϕ)$,若y=f(x)+f'(x)是偶函數(shù),則ϕ=-$\frac{π}{3}$+kπ,k∈Z.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.已知函數(shù)y=3•2x+3的定義域?yàn)閇-1,2],則值域?yàn)閇$\frac{9}{2}$,15].

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+ϕ),x∈R,其中$(A>0,ω>0,0<ϕ<\frac{π}{2})$的周期為π,且圖象上一個(gè)最低點(diǎn)為$M(\frac{2π}{3},-2)$.
(1)求f(x)的解析式;
(2)當(dāng)$x∈[0,\frac{π}{12}]$時(shí),求f(x)的最值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.如果一個(gè)函數(shù)f(x)滿足:(1)定義域?yàn)镽;(2)任意x1,x2∈R,若x1+x2=0,則f(x1)+f(x2)=0;(3)任意x∈R,若t>0,總有f(x+t)>f(x),則f(x)可以是( 。
A.y=-xB.y=3xC.y=x3D.y=log3x

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.已知z為純虛數(shù),且(2+i)z=1+ai3(i為虛數(shù)單位),則復(fù)數(shù)a+z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.為了得到函數(shù)y=2+sin(2x+$\frac{π}{6}$)的圖象,只須將函數(shù)y=sin2x的圖象平移向量( 。
A.($\frac{π}{6}$,-2)B.($\frac{π}{12}$,2)C.($-\frac{π}{12}$,-2)D.($-\frac{π}{12}$,2)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.一條直線和直線外三個(gè)點(diǎn)最多能確定的平面?zhèn)數(shù)是( 。
A.4B.6C.7D.10

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x),且當(dāng)0≤x≤2時(shí),f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有兩個(gè)根,則m的取值范圍是( 。
A.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.[-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)C.(-2,-$\frac{1}{3}$)∪($\frac{1}{3}$,2)D.[-2,-$\frac{1}{3}$]∪[$\frac{1}{3}$,2]

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系xOy中,直線l:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),α∈(0,$\frac{π}{2}$))與圓C:(x-1)2+(y-2)2=4相交于點(diǎn)A,B,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線l與圓C的極坐標(biāo)方程;
(2)求$\frac{1}{|OA|}$$+\frac{1}{|OB|}$的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案