相關(guān)習(xí)題
 0  238565  238573  238579  238583  238589  238591  238595  238601  238603  238609  238615  238619  238621  238625  238631  238633  238639  238643  238645  238649  238651  238655  238657  238659  238660  238661  238663  238664  238665  238667  238669  238673  238675  238679  238681  238685  238691  238693  238699  238703  238705  238709  238715  238721  238723  238729  238733  238735  238741  238745  238751  238759  266669 

科目: 來(lái)源: 題型:選擇題

18.下列函數(shù)既是奇函數(shù)又在(-1,1)上是減函數(shù)的是(  )
A.y=tanxB.y=x-1C.y=log${\;}_{\frac{1}{2}}$$\frac{3+x}{3-x}$D.y=$\frac{1}{3}$(3x-3-x

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.(Ⅰ)解不等式|x-1|+|2x+1|>3
(Ⅱ)如果a,b∈[-1,1],求證|1+$\frac{ab}{4}$|>|$\frac{a+b}{2}$|

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.已知A,B是求O的球面上兩點(diǎn),且∠AOB=120°,C為球面上的動(dòng)點(diǎn),若三棱錐O-ABC體積的最大值為$\frac{16\sqrt{3}}{3}$,則求O的表面積為64π.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.莖葉圖如圖1,為高三某班60名學(xué)生的化學(xué)考試成績(jī),算法框圖如圖2中輸入的a1為莖葉圖中的學(xué)生成績(jī),則輸出的m,n分別是( 。
A.m=29,n=15B.m=29,n=16C.m=15,n=16D.m=16,n=15

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.已知集合M={x|-1≤x≤2},N={x|1-3a<x≤2a},若M∩N=M,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{2}{3}$,1)B.(1,+∞)C.($\frac{2}{3}$,+∞)D.[1,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.若向量$\vec a=(1,λ,2),\vec b=(2,-1,2)$,且$\vec a$與$\vec b$的夾角余弦為$\frac{8}{9}$,則λ等于(  )
A.-2或$\frac{2}{55}$B.-2C.2D.2或$-\frac{2}{55}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是( 。
A.y=|x|B.y=2-xC.y=$\frac{1}{x}$D.y=-x2+4

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.無(wú)錫市要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為60°(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)基橫斷面要求面積為$6\sqrt{3}$平方米,且高度不低于$\sqrt{3}$米,記防洪堤橫斷面的腰長(zhǎng)為x(米),外周長(zhǎng)(梯形的上底線段BC與兩腰長(zhǎng)的和)為y(米).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并指出其定義域;
(2)當(dāng)防洪堤的腰長(zhǎng)x為多少米時(shí),堤的上面與兩側(cè)面的水泥用料最省(即斷面的外周長(zhǎng)最。?求此時(shí)外周長(zhǎng)的值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.在等差數(shù)列{an}中,Sn為數(shù)列{an}的前n項(xiàng)和,且滿足S9=-9,S10=-5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn,并指出當(dāng)n為何值時(shí),Sn取最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知$cos({α+\frac{π}{6}})=\frac{1}{3}$,$α∈({0\;,\;\;\frac{π}{2}})$,求sinα,$sin({2α+\frac{5π}{6}})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案