相關(guān)習(xí)題
 0  238854  238862  238868  238872  238878  238880  238884  238890  238892  238898  238904  238908  238910  238914  238920  238922  238928  238932  238934  238938  238940  238944  238946  238948  238949  238950  238952  238953  238954  238956  238958  238962  238964  238968  238970  238974  238980  238982  238988  238992  238994  238998  239004  239010  239012  239018  239022  239024  239030  239034  239040  239048  266669 

科目: 來源: 題型:解答題

6.已知函數(shù)$f(x)=lnx+\frac{1}{x}$.
(1)求f(x)的最小值;
(2)若方程f(x)=a有兩個(gè)根x1,x2(x1<x2),證明:x1+x2>2.

查看答案和解析>>

科目: 來源: 題型:填空題

5.若一個(gè)二面角的兩個(gè)面的法向量分別為$\overrightarrow{m}$=(0,0,3),$\overrightarrow{n}$=(8,9,2),則這個(gè)二面角的余弦值為±$\frac{2\sqrt{149}}{149}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.如圖,空間四邊形的各邊和對(duì)角線長(zhǎng)均相等,E 是 BC 的中點(diǎn),那么(  )
A.$\overrightarrow{AE}$•$\overrightarrow{BC}$<$\overrightarrow{AE}$•$\overrightarrow{CD}$B.$\overrightarrow{AE}$•$\overrightarrow{BC}$=$\overrightarrow{AE}$•$\overrightarrow{CD}$
C.$\overrightarrow{AE}$•$\overrightarrow{BC}$>$\overrightarrow{AE}$•$\overrightarrow{CD}$D.$\overrightarrow{AE}$•$\overrightarrow{BC}$與 $\overrightarrow{AE}$•$\overrightarrow{CD}$不能比較大小

查看答案和解析>>

科目: 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=|2x-1|的定義域和值域都是[a,b],則a+b=1.

查看答案和解析>>

科目: 來源: 題型:填空題

2.函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f($\frac{π}{6}$)|對(duì)(0,+∞)恒成立,且$f(\frac{π}{2})>f(π)$,則f(x)的單調(diào)遞增區(qū)間是[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知cos2α=-$\frac{1}{9}$,那么tan2α的值為$\frac{5}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.若函數(shù)f(x)與函數(shù)g(x)的奇偶性相同,則稱g(x)為f(x)的同心函數(shù).那么,在下列給出的函數(shù)中,為函數(shù)f(x)=$\frac{{{x^2}-1}}{x}$的同心函數(shù)的是(  )
A.g(x)=x+1B.g(x)=2xC.g(x)=x2D.g(x)=lnx

查看答案和解析>>

科目: 來源: 題型:填空題

19.在曲線的切線y=x3+3x2+6x-10斜率中,最小值是3.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知命題p:?x0∈R,2x0+1≤0,則命題p的否定是( 。
A.?x0∈R,2x0+1>0B.?x∈R,2x+1>0C.?x0∈R,2x0+1≤0D.?x∈R,2x+1≥0

查看答案和解析>>

科目: 來源: 題型:填空題

17.在正三角形ABC的底邊BC上取中點(diǎn)M,在與底邊BC相鄰的兩條邊BA和CA上分別取點(diǎn)P、Q,若線段PQ對(duì)M的張角∠PMQ為銳角,則稱點(diǎn)P、Q親密.若點(diǎn)P、Q在BA、CA上的位置隨機(jī)均勻分布,則P、Q親密的概率稱為正三角形的親密度.則正三角形的親密度為$\frac{6-3ln3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案