相關(guān)習題
 0  239015  239023  239029  239033  239039  239041  239045  239051  239053  239059  239065  239069  239071  239075  239081  239083  239089  239093  239095  239099  239101  239105  239107  239109  239110  239111  239113  239114  239115  239117  239119  239123  239125  239129  239131  239135  239141  239143  239149  239153  239155  239159  239165  239171  239173  239179  239183  239185  239191  239195  239201  239209  266669 

科目: 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{\sqrt{2}}{2}$,它過點P(-1,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C上存在兩個不同的點A、B關(guān)于直線y=-$\frac{1}{m}$x+$\frac{1}{2}$對稱,求△OAB的面積的最大值(O為坐標原點).

查看答案和解析>>

科目: 來源: 題型:解答題

14.社區(qū)服務(wù)是綜合實踐活動課程的重要內(nèi)容.上海市教育部門在全市高中學生中隨機抽取200位學生參加社區(qū)服務(wù)的數(shù)據(jù),按時間段[65,70),[70,75),[75,80),[80,85),[85,90)(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學生中,參加社區(qū)服務(wù)時間不少于80小時的學生人數(shù),并估計從全市高中學生中任意選取一人,其參加社區(qū)服務(wù)時間不少于80小時的概率;
(Ⅱ)從全市高中學生中任意選取3位學生,記ξ為3名學生中參加社區(qū)服務(wù)時間不少于80小時的人數(shù),試求隨機變量ξ的分布列和數(shù)學期望Eξ和方差Dξ.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知{an}是等比數(shù)列,a2=1,a5=$\frac{1}{8}$,設(shè)Sn=a1a2+a2a3+…+anan+1(n∈N*),λ為實數(shù).若對?n∈N*都有λ>Sn成立,則λ的取值范圍是[$\frac{8}{3}$,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

12.閱讀右邊程序框圖,當輸入的值為3時,運行相應(yīng)程序,則輸出x的值為(  )
A.7B.15C.31D.63

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=xln(x-1)-ax2+bx(a,b∈R,a,b為常數(shù),e為自然對數(shù)的底數(shù)).
(Ⅰ)當a=-1時,討論函數(shù)f(x)在區(qū)間$(\frac{1}{e}+1,e+1)$上極值點的個數(shù);
(Ⅱ)當a=1,b=e+2時,對任意的x∈(1,+∞)都有$f(x)<k{e^{\frac{1}{2}x}}$成立,求正實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知四棱錐S-ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,點E是棱AD的中點,點F在棱SC上,且$\overrightarrow{SF}=λ\overrightarrow{SC}$,SA∥平面BEF.
(Ⅰ)求實數(shù)λ的值;
(Ⅱ)求二面角S-BE-F的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.近年來隨著我國在教育科研上的投入不斷加大,科學技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設(shè)30多個分支機構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從70后和80后的員工中隨機調(diào)查了100位,得到數(shù)據(jù)如表:
愿意被外派不愿意被外派合計
70后202040
80后402060
合計6040100
(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有90%以上的把握認為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(Ⅱ)該公司舉行參觀駐海外分支機構(gòu)的交流體驗活動,擬安排6名參與調(diào)查的70后、80后員工參加.70后員工中有愿意被外派的3人和不愿意被外派的3人報名參加,從中隨機選出3人,記選到愿意被外派的人數(shù)為x;80后員工中有愿意被外派的4人和不愿意被外派的2人報名參加,從中隨機選出3人,記選到愿意被外派的人數(shù)為y,求x<y的概率.
參考數(shù)據(jù):
P(K2>k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d).

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=2sinx•sin(x+$\frac{π}{3}$).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)銳角△ABC的角A,B,C所對邊分別是a,b,c,角A的平分線交BC于D,直線x=A是函數(shù)f(x)圖象的一條對稱軸,AD=$\sqrt{2}$BD=2,求邊a.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知遞增數(shù)列{an}對任意n∈N*均滿足an∈N*,aan=3n,記${b_n}={a_{2•{3^{n-1}}}}$(n∈N*),則數(shù)列{bn}的前n項和等于( 。
A.2n+nB.2n+1-1C.$\frac{{{3^{n+1}}-3n}}{2}$D.$\frac{{{3^{n+1}}-3}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知拋物線C:y2=4x,過焦點F且斜率為$\sqrt{3}$的直線與C相交于P,Q兩點,且P,Q兩點在準線上的投影分別為M,N兩點,則S△MFN=( 。
A.$\frac{8}{3}$B.$\frac{{8\sqrt{3}}}{3}$C.$\frac{16}{3}$D.$\frac{{16\sqrt{3}}}{3}$

查看答案和解析>>

同步練習冊答案