相關(guān)習(xí)題
 0  239269  239277  239283  239287  239293  239295  239299  239305  239307  239313  239319  239323  239325  239329  239335  239337  239343  239347  239349  239353  239355  239359  239361  239363  239364  239365  239367  239368  239369  239371  239373  239377  239379  239383  239385  239389  239395  239397  239403  239407  239409  239413  239419  239425  239427  239433  239437  239439  239445  239449  239455  239463  266669 

科目: 來源: 題型:解答題

8.某高中組織數(shù)學(xué)知識競賽,采取答題闖關(guān)的形式,分兩種題型,每種題型設(shè)兩關(guān).“數(shù)學(xué)文化”題答對一道得5分,“數(shù)學(xué)應(yīng)用”題答對一道得10分,答對一道題即可進(jìn)入下一關(guān),否則終止比賽.有甲、乙、丙三人前來參賽,設(shè)三人答對每道題的概率分別是$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,三人答題互不影響.甲、乙選擇“數(shù)學(xué)文化”題,丙選擇“數(shù)學(xué)應(yīng)用”題.
(Ⅰ)求乙、丙兩人所得分?jǐn)?shù)相等的概率;
(Ⅱ)設(shè)甲、丙兩人所得分?jǐn)?shù)之和為隨機(jī)變量X,求X的分布列與期望.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(sin(π+ωx),2cosωx),$\overrightarrow$=(2$\sqrt{3}$sin($\frac{π}{2}$+ωx),cosωx),(ω>0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,其圖象上相鄰的兩個最低點(diǎn)之間的距離為π.
(Ⅰ)求函數(shù)f(x)的對稱中心;
(Ⅱ)在銳角△ABC中,角A、B、C的對邊分別為a、b、c,tanB=$\frac{\sqrt{3}ac}{{a}^{2}+{c}^{2}-^{2}}$,求f(A)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.若函數(shù)f(x)=$\frac{2{e}^{x}}{{e}^{x}+1}$+ln($\sqrt{{x}^{2}+1}$+x)+${∫}_{0}^{x}$cos xdx在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],則m+n的值是( 。
A.0B.2C.4D.6

查看答案和解析>>

科目: 來源: 題型:選擇題

5.△ABC中,角A、B、C的對邊分別為a、b、c,G是平面△ABC上一點(diǎn),且滿足a•$\overrightarrow{GA}$+b•$\overrightarrow{GB}$+c•$\overrightarrow{GC}$=0,則G是△ABC中的(  )
A.內(nèi)心B.外心C.重心D.垂心

查看答案和解析>>

科目: 來源: 題型:選擇題

4.《數(shù)學(xué)九章》中對已知三角形三邊長求三角形的面積的求法填補(bǔ)了我國傳統(tǒng)數(shù)學(xué)的一個空白,與著名的海倫公式完全等價(jià),由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-^{2}}{2})^{2}]}$.現(xiàn)有周長為4+$\sqrt{10}$的△ABC滿足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:
($\sqrt{2}$+1),試用以上給出的公式求得△ABC的面積為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{5}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.變量x,y滿足線性約束條件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥-x-1}\end{array}\right.$,目標(biāo)函數(shù)z=kx+y僅在點(diǎn)(0,2)取得最大值,則k的取值范圍是( 。
A.-3<k<1B.k>1C.-1<k<1D.-1<k<3

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知空間兩不同直線m,n,兩不同平面α、β,下列命題正確的是(  )
A.若m∥α且n∥α,則m∥nB.若m⊥β且m⊥n,則n∥β
C.若m⊥α且m∥β,則α⊥βD.若α⊥β且m⊥α,m⊥n則n⊥β

查看答案和解析>>

科目: 來源: 題型:選擇題

1.若x1,x2,…,x2017的平均數(shù)為4,標(biāo)準(zhǔn)差為3,且yi=-3(xi-2),i=x1,x2,…,x2017,則新數(shù)據(jù)y1,y2,…,y2017的平均數(shù)和標(biāo)準(zhǔn)差分別為( 。
A.-6     9B.-6    27C.-12    9D.-12    27

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知集合A={x||x|≤2},B={x|x2-x-2<0},則A∩∁RB=( 。
A.RB.{x|-2≤x≤-1}C.{x|-2≤x≤-1或x>2}D.{x|-2≤x≤-1或x=2}

查看答案和解析>>

科目: 來源: 題型:選擇題

19.復(fù)數(shù)z=i2016+($\frac{1+i}{1-i}$)2017(i是虛數(shù)單位)的共軛復(fù)數(shù)$\overline{z}$表示的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案