相關(guān)習(xí)題
 0  239288  239296  239302  239306  239312  239314  239318  239324  239326  239332  239338  239342  239344  239348  239354  239356  239362  239366  239368  239372  239374  239378  239380  239382  239383  239384  239386  239387  239388  239390  239392  239396  239398  239402  239404  239408  239414  239416  239422  239426  239428  239432  239438  239444  239446  239452  239456  239458  239464  239468  239474  239482  266669 

科目: 來(lái)源: 題型:解答題

12.在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥DC,BC=4,AD=DC=2,E為PA的中點(diǎn),F(xiàn)為線段BC上一點(diǎn),且CF=1.
(Ⅰ)證明:EF∥平面PCD;
(Ⅱ)證明:平面PAB⊥平面PAC.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.共享單車(chē)的出現(xiàn)方便了人們的出行,深受市民的喜愛(ài).為調(diào)查某大學(xué)生對(duì)共享單車(chē)的使用情況,從該校學(xué)生中隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,得到男生、女生每周使用共享單車(chē)的時(shí)間(單位:小時(shí))如下表:
使用時(shí)間[0,2](2,4](4,6]
女生人數(shù)2020z
男生人數(shù)204060
按每周使用時(shí)間分層抽樣的方法在這些學(xué)生中抽取10人,其中每周使用時(shí)間在[0,2]內(nèi)的學(xué)生有2人.
(Ⅰ)求z的值;
(Ⅱ)將每周使用時(shí)間在(2,4]內(nèi)的學(xué)生按性別分層抽樣的方法抽取一個(gè)容量為6的樣本.若從該樣本中任取2人,求至少有1位女生的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,}&{x<1}\\{\frac{lnx}{x},}&{x≥1}\end{array}\right.$若方程f(x)=m恰有五個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為(0,$\frac{1}{e}$).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.在梯形ABCD中,AB∥CD,∠BAD=$\frac{π}{2}$,M為BC中點(diǎn),且AB=AD=2CD=2,則$\overrightarrow{AM}$•$\overrightarrow{BD}$的值為-1.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.以下莖葉圖記錄的是某同學(xué)高三5次模擬考試數(shù)學(xué)得分:

則這5次得分的方差為2.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.若函數(shù)f(x)滿(mǎn)足:當(dāng)x<1時(shí),f(x)=($\frac{1}{2}$)x;當(dāng)x≥1時(shí),f(x+1)=-f(x),則f(2017+log23)=(  )
A.$\frac{1}{12}$B.$\frac{1}{8}$C.$\frac{3}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=sin(2x+φ),將其圖象向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度后得到的函數(shù)為偶函數(shù),則φ的最小正值為(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x)=g(x)+x2,且當(dāng)x≥0時(shí),g(x)=log2(x+1),則g(-1)=-3.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax(lnx-1)-x2(a∈R)恰有兩個(gè)極值點(diǎn)x1,x2,且x1<x2
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)若不等式lnx1+λlnx2>1+λ恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足a1=1,an•an+1=2Sn,設(shè)bn=$\frac{{a}_{n}}{{3}^{{a}_{n}}}$,若存在正整數(shù)p,q(p<q),使得b1,bp,bq成等差數(shù)列,則p+q=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案