相關(guān)習(xí)題
 0  239296  239304  239310  239314  239320  239322  239326  239332  239334  239340  239346  239350  239352  239356  239362  239364  239370  239374  239376  239380  239382  239386  239388  239390  239391  239392  239394  239395  239396  239398  239400  239404  239406  239410  239412  239416  239422  239424  239430  239434  239436  239440  239446  239452  239454  239460  239464  239466  239472  239476  239482  239490  266669 

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=ex,g(x)=lnx+a.
(1)設(shè)h(x)=xf(x),求h(x)的最小值;
(2)若曲線y=f(x)與y=g(x)僅有一個(gè)交點(diǎn)P,證明:曲線y=f(x)與y=g(x)在點(diǎn)P處有相同的切線,且$a∈({2,\frac{5}{2}})$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過點(diǎn)$M({\sqrt{3},\frac{1}{2}})$,且離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓Γ的方程;
(2)設(shè)點(diǎn)M在x軸上的射影為點(diǎn)N,過點(diǎn)N的直線l與橢圓Γ相交于A,B兩點(diǎn),且$\overrightarrow{NB}+3\overrightarrow{NA}$=0,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

10.某學(xué)校用簡單隨機(jī)抽樣方法抽取了30名同學(xué),對其每月平均課外閱讀時(shí)間(單位:小時(shí))進(jìn)行調(diào)查,莖葉圖如圖:若將月均課外閱讀時(shí)間不低于30小時(shí)的學(xué)生稱為“讀書迷”.
(1)將頻率視為概率,估計(jì)該校900名學(xué)生中“讀書迷”有多少人?
(2)從已抽取的7名“讀書迷”中隨機(jī)抽取男、女“讀書迷”各1人,參加讀書日宣傳活動.
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書迷”月均讀書時(shí)間相差不超過2小時(shí)的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.在平面直角坐標(biāo)系xOy中,圓O的方程為x2+y2=4,直線l的方程為y=k(x+2),若在圓O上至少存在三點(diǎn)到直線l的距離為1,則實(shí)數(shù)k的取值范圍是( 。
A.$[{0,\frac{{\sqrt{3}}}{3}}]$B.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$C.$[{-\frac{1}{2},\frac{1}{2}}]$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

科目: 來源: 題型:選擇題

8.函數(shù)$f(x)=cos({ωx+\frac{π}{6}})$(ω>0)的最小正周期為π,則f(x)滿足( 。
A.在$({0,\frac{π}{3}})$上單調(diào)遞增B.圖象關(guān)于直線$x=\frac{π}{6}$對稱
C.$f({\frac{π}{3}})=\frac{{\sqrt{3}}}{2}$D.當(dāng)$x=\frac{5π}{12}$時(shí)有最小值-1

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知平面α⊥平面β,則“直線m⊥平面α”是“直線m∥平面β”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:解答題

6.某學(xué)校用簡單隨機(jī)抽樣方法抽取了100名同學(xué),對其日均課外閱讀時(shí)間(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:
t[0,15)[15,30)[30,45)[45,60)[60,75)[75,90)
男同學(xué)人數(shù)711151221
女同學(xué)人數(shù)89171332
若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書迷”.
(1)將頻率視為概率,估計(jì)該校4000名學(xué)生中“讀書迷”有多少人?
(2)從已抽取的8名“讀書迷”中隨機(jī)抽取4位同學(xué)參加讀書日宣傳活動.
(i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;
(ii)記抽取的“讀書迷”中男生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:填空題

5.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若Sn+an=4-$\frac{1}{{{2^{n-2}}}}({n∈{N^*}})$,則an=$\frac{n}{{2}^{n-1}}$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y-a≥0\end{array}\right.$,目標(biāo)函數(shù)z=2x+y的最小值為-5,則實(shí)數(shù)a=-3.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.拋物線C:y2=4x的焦點(diǎn)為F,N為準(zhǔn)線上一點(diǎn),M為y軸上一點(diǎn),∠MNF為直角,若線段MF的中點(diǎn)E在拋物線C上,則△MNF的面積為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$3\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案