相關(guān)習(xí)題
 0  240195  240203  240209  240213  240219  240221  240225  240231  240233  240239  240245  240249  240251  240255  240261  240263  240269  240273  240275  240279  240281  240285  240287  240289  240290  240291  240293  240294  240295  240297  240299  240303  240305  240309  240311  240315  240321  240323  240329  240333  240335  240339  240345  240351  240353  240359  240363  240365  240371  240375  240381  240389  266669 

科目: 來源: 題型:解答題

16.某中學(xué)為了解高一年級(jí)學(xué)生身體發(fā)育情況,對(duì)全校1400名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得一組樣本的身高(單位:cm)頻數(shù)分布表如表1、表2.
表1:男生身高頻數(shù)分布表
 身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
 頻數(shù)2511453
表2:女生身高頻數(shù)分布表
 身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
 頻數(shù)28151221
(I)估計(jì)該校高一女生的人數(shù):
(II)估計(jì)該校學(xué)生身高在[165,180)的概率;
(III)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出1人,設(shè)X表示身高在[165,180)的學(xué)生人數(shù),求X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目: 來源: 題型:解答題

15.在△ABC中,a,b,c分別是A,B,C的對(duì)邊,且$\frac{tanC}{tanB}=-\frac{c}{2a+c}$.
(I)求B;
(II)若b=2$\sqrt{3}$,a+c=4,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

14.我國(guó)齊梁時(shí)代的數(shù)學(xué)家祖暅(公元前5-6世紀(jì),祖沖之之子)提出了一條原理:“冪勢(shì)既同,則積不容異”,這個(gè)原理的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.該原理在西方直到十七世紀(jì)才由意大利數(shù)學(xué)家卡瓦列利發(fā)現(xiàn),比祖暅晚一千一百多年.橢球體是橢圓繞其軸旋轉(zhuǎn)所成的旋轉(zhuǎn)體,如圖,將底面直徑都為2b,高皆為a的橢半球體和已被挖去了圓錐體的圓柱體放置于同一平面β上,用平行于平面β且與平面β任意距離d處的平面截這兩個(gè)幾何體,可橫截得到S及S環(huán)兩截面,可以證明S=S環(huán)總成立.據(jù)此,短軸長(zhǎng)為$2\sqrt{3}$,長(zhǎng)軸為5的橢球體的體積是10π.

查看答案和解析>>

科目: 來源: 題型:填空題

13.閱讀如圖的程序框圖,若運(yùn)行相應(yīng)的程序,則輸出k的值為99.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知曲線C在平面直角坐標(biāo)系xOy下的參數(shù)方程為$\left\{\begin{array}{l}x=1+\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線C的普通方程及極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是$ρcos(θ-\frac{π}{6})=3\sqrt{3}$,射線OT:$θ=\frac{π}{3}(ρ>0)$與曲線C交于點(diǎn)A與直線l交于點(diǎn)B,求線段AB的長(zhǎng).

查看答案和解析>>

科目: 來源: 題型:選擇題

11.閱讀下邊的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果為( 。
A.-2B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目: 來源: 題型:填空題

10.設(shè)拋物線x2=2y的焦點(diǎn)為F,經(jīng)過點(diǎn)P(1,3)的直線l與拋物線相交于A,B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),則$|\overrightarrow{AF}|+|\overrightarrow{BF}|$=7.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)左右焦點(diǎn)分別為F1,F(xiàn)2,漸近線為l1,l2,P位于l1在第一象限內(nèi)的部分,若l2⊥PF1,l2∥PF2,則雙曲線的離心率為( 。
A.2B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知a>2,f(x)=|2x-a|+|x-1|.
(Ⅰ)求函數(shù)f(x)最小值;
(Ⅱ)關(guān)于x的不等式f(x)≤2-|x-1|有解,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.平面直角坐標(biāo)系xOy中,曲線C1的方程是$\frac{x^2}{4}+\frac{y^2}{12}=1$,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2cosθ-4sinθ.
(Ⅰ)寫出C1的參數(shù)方程和C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)C2與x軸的一個(gè)交點(diǎn)是P(m,0)(m>0),經(jīng)過P斜率為1的直線l交C1于A,B兩點(diǎn),根據(jù)(Ⅰ)中你得到的參數(shù)方程,求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案