相關(guān)習(xí)題
 0  259316  259324  259330  259334  259340  259342  259346  259352  259354  259360  259366  259370  259372  259376  259382  259384  259390  259394  259396  259400  259402  259406  259408  259410  259411  259412  259414  259415  259416  259418  259420  259424  259426  259430  259432  259436  259442  259444  259450  259454  259456  259460  259466  259472  259474  259480  259484  259486  259492  259496  259502  259510  266669 

科目: 來(lái)源: 題型:

【題目】已知長(zhǎng)方形 , .以的中點(diǎn)為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系.

(1)求以、為焦點(diǎn),且過(guò)、兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線交(1)中橢圓于兩點(diǎn),是否存在直線,使得弦為直徑的圓恰好過(guò)原點(diǎn)?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知, .

(1)求函數(shù)的最小值;

(2)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】[選修4-1:幾何證明選講]
如圖,△OAB是等腰三角形,∠AOB=120°.以O(shè)為圓心, OA為半徑作圓.

(1)證明:直線A與⊙O相切;
(2)點(diǎn)C,D在⊙O上,且A,B,C,D四點(diǎn)共圓,證明:AB∥CD.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】三棱錐P﹣ABC中,底面△ABC滿足BA=BC, ,P在面ABC的射影為AC的中點(diǎn),且該三棱錐的體積為 ,當(dāng)其外接球的表面積最小時(shí),P到面ABC的距離為(
A.2
B.3
C.
D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】[選修4-1:幾何證明選講]
如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點(diǎn)重合),且DE=DG,過(guò)D點(diǎn)作DF⊥CE,垂足為F.

(1)證明:B,C,G,F(xiàn)四點(diǎn)共圓;
(2)若AB=1,E為DA的中點(diǎn),求四邊形BCGF的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】給出下列命題:(1)存在實(shí)數(shù)x,使; (2)是銳角的內(nèi)角,則>; (3)函數(shù)y=sin( -)是偶函數(shù); (4)函數(shù)y=sin2的圖象向右平移個(gè)單位,得到y=sin(2+)的圖象.其中正確的命題的序號(hào)是____________.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】三棱柱,側(cè)棱與底面垂直,,,,分別是,的中點(diǎn).

)求證:平面

)求證:平面平面

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知點(diǎn)是函數(shù) (),)的圖象上一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列 ()的首項(xiàng)為,且前項(xiàng)和滿足: ().

(1).求數(shù)列的通項(xiàng)公式;

(2).若數(shù)列的通項(xiàng)求數(shù)列的前項(xiàng)和;

(3).若數(shù)列項(xiàng)和為,試問(wèn)的最小正整數(shù)是多少.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓的上、下焦點(diǎn)分別為,上焦點(diǎn)到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=

(I)若P是橢圓C上任意一點(diǎn),求的取值范圍;

(II)設(shè)過(guò)橢圓C的上頂點(diǎn)A的直線與橢圓交于點(diǎn)B(B不在y軸上),垂直于的直線與交于點(diǎn)M,與軸交于點(diǎn)H,若,且,求直線的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】是雙曲線上一點(diǎn), 分別是雙曲線的左、右頂點(diǎn),直線的斜率之積為.

(1)求雙曲線的離心率;

(2)過(guò)雙曲線的右焦點(diǎn)且斜率為的直線交雙曲線于兩點(diǎn), 為坐標(biāo)原點(diǎn), 為雙曲線上一點(diǎn),滿足,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案