相關習題
 0  259539  259547  259553  259557  259563  259565  259569  259575  259577  259583  259589  259593  259595  259599  259605  259607  259613  259617  259619  259623  259625  259629  259631  259633  259634  259635  259637  259638  259639  259641  259643  259647  259649  259653  259655  259659  259665  259667  259673  259677  259679  259683  259689  259695  259697  259703  259707  259709  259715  259719  259725  259733  266669 

科目: 來源: 題型:

【題目】ABC中,AsinC

)求B的大;

)求cosA+cosC的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知向量(sin x,cos x)(cos x,cos x),(2,1)

(1)若,求sin xcos x的值;

(2)若0<x≤,求函數(shù)f(x)=·的值域.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的長軸長為6,且橢圓與圓 的公共弦長為.

(1)求橢圓的方程.

(2)過點作斜率為的直線與橢圓交于兩點 ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知某漁船在漁港O的南偏東60°方向,距離漁港約160海里的B處出現(xiàn)險情,此時在漁港的正上方恰好有一架海事巡邏飛機A接到漁船的求救信號,海事巡邏飛機迅速將情況通知了在C處的漁政船并要求其迅速趕往出事地點施救.若海事巡邏飛機測得漁船B的俯角為68.20°,測得漁政船C的俯角為63.43°,且漁政船位于漁船的北偏東60°方向上.

)計算漁政船C與漁港O的距離;

)若漁政船以每小時25海里的速度直線行駛,能否在3小時內(nèi)趕到出事地點?

(參考數(shù)據(jù):sin68.20°≈0.93tan68.20°≈2.50,shin63.43°≈0.90,tan63.43°≈2.00, ≈3.62 ≈3.61

查看答案和解析>>

科目: 來源: 題型:

【題目】下列命題:①在線性回歸模型中,相關指數(shù)表示解釋變量對于預報變量的貢獻率, 越接近于1,表示回歸效果越好;②兩個變量相關性越強,則相關系數(shù)的絕對值就越接近于1;③在回歸直線方程中,當解釋變量每增加一個單位時,預報變量平均減少0.5個單位;④對分類變量,它們的隨機變量的觀測值來說, 越小,“有關系”的把握程度越大.其中正確命題的個數(shù)是

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=-a2 lnx+x2-ax(a∈R).

(1)試討論函數(shù)f(x)的單調(diào)性:

(2)若函數(shù)f(x)在區(qū)間(1,e)中有兩個零點,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=(a、b∈R,a、b為常數(shù)),且y=f(x)在x=1處切線方程為y=x﹣1.
(1)求a,b的值;
(2)設h(x)= , k(x)=2h′(x)x2 , 求證:當x>0時,k(x)<+

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱中,,,是棱上一點.

1)求證:;

2)若分別為、的中點,求證://平面

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,某公路 一側(cè)有一塊空地 ,其中 , .當?shù)卣當M在中間開挖一個人工湖△OMN,其中M,N都在邊AB上(M,N不與AB重合,MA,N之間),且MON=30°.

(1)若M在距離A2 km處,求點M,N之間的距離;

(2)為節(jié)省投入資金,人工湖△OMN的面積要盡可能。嚧_定M的位置,使△OMN的面積最小,并求出最小面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線y2=2px(p>0)上一點P(3,t)到其焦點的距離為4.
(1)求p的值;
(2)過點Q(1,0)作兩條直線l1 , l2與拋物線分別交于點A、B和C、D,點M,N分別是線段AB和CD的中點,設直線l1 , l2的斜率分別為k1 , k2 , 若k1+k2=3,求證:直線MN過定點.

查看答案和解析>>

同步練習冊答案