科目: 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A.1盞
B.3盞
C.5盞
D.9盞
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn),且圓心在直線:上.
(1)求圓的方程;
(2)過點(diǎn)的直線與圓交于兩點(diǎn),問在直線上是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C與A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(Ⅰ)證明:坐標(biāo)原點(diǎn)O在圓M上;
(Ⅱ)設(shè)圓M過點(diǎn)P(4,﹣2),求直線l與圓M的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過千米小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,
(1)把全程運(yùn)輸成本(元)表示為速度(千米小時(shí))的函效:并求出當(dāng)時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最小;
(2)隨著汽車的折舊,運(yùn)輸成本會(huì)發(fā)生一些變化,那么當(dāng),此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會(huì)使得運(yùn)輸成本最小,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐的底面是菱形,底面,是上的任意一點(diǎn)
求證:平面平面
設(shè),求點(diǎn)到平面的距離
在的條件下,若,求與平面所成角的正切值
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為確定下一年度投人某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷售額(單位:萬元)的影響,對(duì)近6年的年宣傳費(fèi)和年銷售額數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)宣傳費(fèi)和年銷售額具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
(I)根據(jù)表中數(shù)據(jù)建立關(guān)于的回歸方程;
(Ⅱ)利用(I)中的回歸方程預(yù)測(cè)該公司如果對(duì)該產(chǎn)品的宜傳費(fèi)支出為10萬元時(shí)銷售額是萬元,該公司計(jì)劃從10名中層管理人員中挑選3人擔(dān)任總裁助理,10名中層管理人員中有2名是技術(shù)部骨干,記所挑選3人中技術(shù)部骨干人數(shù)為且隨機(jī)變量,求的概率分布列與數(shù)學(xué)期望.
附:回歸直線的傾斜率截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著業(yè)的迅速發(fā)展計(jì)算機(jī)也在迅速更新?lián)Q代,平板電腦因使用和移動(dòng)便捷以及時(shí)尚新潮性,而備受人們尤其是大學(xué)生的青睞,為了解大學(xué)生購買平板電腦進(jìn)行學(xué)習(xí)的學(xué)習(xí)情況,某大學(xué)內(nèi)進(jìn)行了一次匿名調(diào)查,共收到1500份有效問卷.調(diào)查結(jié)果顯示700名女學(xué)生中有300人,800名男生中有400人擁有平板電腦.
(Ⅰ)完成下列列聯(lián)表:
(Ⅱ)分析是否有的把握認(rèn)為購買平板電腦與性別有關(guān)?
附:獨(dú)立性檢驗(yàn)臨界值表:
(參考公式:,其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】校運(yùn)動(dòng)會(huì)高二理三個(gè)班級(jí)的3名同學(xué)報(bào)名參加鉛球、跳高、三級(jí)跳遠(yuǎn)3個(gè)運(yùn)動(dòng)項(xiàng)目,每名同學(xué)都可以從3個(gè)運(yùn)動(dòng)項(xiàng)目中隨機(jī)選擇一個(gè),且每個(gè)人的選擇相互獨(dú)立.
(1)求3名同學(xué)恰好選擇了2個(gè)不同運(yùn)動(dòng)項(xiàng)目的概率;
(Ⅱ)設(shè)選擇跳高的人數(shù)為試求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.(12分)
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為﹣1,證明:l過定點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解學(xué)生暑假閱讀名著的情況,一名教師對(duì)某班級(jí)的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表.
男生 | |||||
女生 |
()從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生閱讀名著本數(shù)之和為的概率?
()若從閱讀名著不少于本的學(xué)生中任選人,設(shè)選到的男學(xué)生人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
()試判斷男學(xué)生閱讀名著本數(shù)的方差與女學(xué)生閱讀名著本數(shù)的方程的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com