科目: 來源: 題型:
【題目】【2018貴州遵義市高三上學期第二次聯(lián)考】設拋物線的準線與軸交于,拋物線的焦點為,以為焦點,離心率的橢圓與拋物線的一個交點為;自引直線交拋物線于兩個不同的點,設.
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐,側面是邊長為2的正三角形,且平面平面,底面是的菱形, 為棱上的動點,且.
(Ⅰ)求證: ;
(Ⅱ)試確定的值,使得二面角的平面角余弦值為.
查看答案和解析>>
科目: 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤(單位:元)關于當天需求量(單位:枝, )的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(1)若花店一天購進17枝玫瑰花, 表示當天的利潤(單位:元),求的分布列及數(shù)學期望;
(2)若花店計劃一天購進16枝或17枝玫瑰花,以利潤角度看,你認為應購進16枝好還是17枝好?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設是定義在上的偶函數(shù), ,都有,且當時, ,若函數(shù)()在區(qū)間內恰有三個不同零點,則實數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為坐標原點,拋物線上在第一象限內的點到焦點的距離為,曲線在點處的切線交軸于點,直線經(jīng)過點且垂直于軸.
(Ⅰ)求點的坐標;
(Ⅱ)設不經(jīng)過點和的動直線交曲線于點和,交于點,若直線,,的斜率依次成等差數(shù)列,試問:是否過定點?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿足,,.為側棱的中點,為側棱上的任意一點.
(1)若為的中點,求證: 面平面;
(2)是否存在點,使得直線與平面垂直? 若存在,寫出證明過程并求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在市的區(qū)開設分店.為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設分店的個數(shù), 表示這個分店的年收入之和.
(個) | 2 | 3 | 4 | 5 | 6 |
(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合與的關系,求關于的線性回歸方程;
(Ⅱ)假設該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關系為,請結合(Ⅰ)中的線性回歸方程,估算該公司應在區(qū)開設多少個分店,才能使區(qū)平均每個分店的年利潤最大?
參考公式:
, , .
查看答案和解析>>
科目: 來源: 題型:
【題目】狄利克雷函數(shù)是高等數(shù)學中的一個典型函數(shù),若,則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com