相關(guān)習(xí)題
 0  261511  261519  261525  261529  261535  261537  261541  261547  261549  261555  261561  261565  261567  261571  261577  261579  261585  261589  261591  261595  261597  261601  261603  261605  261606  261607  261609  261610  261611  261613  261615  261619  261621  261625  261627  261631  261637  261639  261645  261649  261651  261655  261661  261667  261669  261675  261679  261681  261687  261691  261697  261705  266669 

科目: 來源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:

①若,則

②若,,,則

③若,,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目: 來源: 題型:

【題目】ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知(b-c)2a2bc.

(1)求sinA;

(2)若a=2,且sinB,sinA,sinC成等差數(shù)列,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以平面直角坐標系的原點為極點,正半軸為極軸,取相同的長度單位建立極坐標系,曲線的極坐標方程為.

(1)求直線和曲線的直角坐標方程,并指明曲線的形狀;

(2)設(shè)直線與曲線交于兩點, 為坐標原點,且,求.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù);

(1)若,求證: 上單調(diào)遞增;

(2)若,試討論零點的個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線的焦點為,且過點,橢圓的離心率為,點為拋物線與橢圓的一個公共點,且.

(1)求橢圓的方程;

(2)過橢圓內(nèi)一點的直線的斜率為,且與橢圓交于兩點,設(shè)直線為坐標原點)的斜率分別為,若對任意,存在實數(shù),使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列中,,).

1)求的值;

2)是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,請說明理由;

3)設(shè)數(shù)列的前n項和為,求

查看答案和解析>>

科目: 來源: 題型:

【題目】1)求過點,斜率是直線的斜率的的直線的縱截距;

2)直線經(jīng)過點且與直線垂直,求直線與兩坐標軸圍成的三角形面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,直線的極坐標方程為,且點在直線上.

(1)求的值及直線的直角坐標方程;

(2)圓的極坐標方程為,試判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目: 來源: 題型:

【題目】2017年是某市大力推進居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識”的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖所示:

(1)估計該組數(shù)據(jù)的中位數(shù)、眾數(shù);

(2)由頻率分布直方圖可以認為,此次問卷調(diào)查的得分服從正態(tài)分布, 近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求;

(3)在(2)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:

(。┑梅植坏陀可獲贈2次隨機話費,得分低于則只有1次;

(ⅱ)每次贈送的隨機話費和對應(yīng)概率如下:

現(xiàn)有一位市民要參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列和數(shù)學(xué)期望.

附:

,則 .

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直三棱柱中,側(cè)面是正方形, 側(cè)面, ,點的中點.

(1)求證: //平面

(2)若,垂足為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案