相關(guān)習(xí)題
 0  262501  262509  262515  262519  262525  262527  262531  262537  262539  262545  262551  262555  262557  262561  262567  262569  262575  262579  262581  262585  262587  262591  262593  262595  262596  262597  262599  262600  262601  262603  262605  262609  262611  262615  262617  262621  262627  262629  262635  262639  262641  262645  262651  262657  262659  262665  262669  262671  262677  262681  262687  262695  266669 

科目: 來源: 題型:

【題目】如圖,在銳角△ABC中,∠BAC≠60°,過點B、C分別作△ABC外接圓的切線BD、CE,且滿足,直線DE與AB、AC的延長線分別交于點F、G、CF與BD交于點M,CE與BG交于點N.證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)A、B、C、D為空間四個不共面的點,以的概率在每對點之間連一條邊,任意兩對點之間是否連邊是相互獨立的,則點A與B可用(一條邊或者若干條邊組成的)空間折線連接的概率為_______.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓C經(jīng)過點,兩點,且圓心C在直線.

1)求圓C的方程;

2)設(shè),對圓C上任意一點P,在直線MC上是否存在與點M不重合的點N,使是常數(shù),若存在,求出點N坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】科研人員在對某物質(zhì)的繁殖情況進(jìn)行調(diào)查時發(fā)現(xiàn),1月、2月、3月該物質(zhì)的數(shù)量分別為3、5、9個單位.為了預(yù)測以后各月該物質(zhì)的數(shù)量,甲選擇了模型,乙選擇了模型,其中y為該物質(zhì)的數(shù)量,x為月份數(shù),a,b,c,p,qr為常數(shù).

1)若5月份檢測到該物質(zhì)有32個單位,你認(rèn)為哪個模型較好,請說明理由.

2)對于乙選擇的模型,試分別計算4月、7月和10月該物質(zhì)的當(dāng)月增長量,從計算結(jié)果中你對增長速度的體會是什么?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,三棱柱中,側(cè)棱垂直底面,∠ACB=90°,,D的中點,點PAB的中點.

1)求證:平面;

2)求證:

3)求三棱錐B-CDP的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍;

2)對于區(qū)間上的任意不相等的實數(shù)、,都有成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列的前項和為,且,

(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;

(2)是否存在實數(shù),對任意,不等式恒成立?若存在,求出的取值范圍,若不存在請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)的定義域為D,若存在閉區(qū)間,使得函數(shù)滿足以下兩個條件:(1[m,n]上是單調(diào)函數(shù);(2[m,n]上的值域為[2m,2n],則稱區(qū)間[m,n]的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有( )個.

A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱底面,且, 是棱的中點,點在側(cè)棱上運動.

(1)當(dāng)是棱的中點時,求證: 平面;

(2)當(dāng)直線與平面所成的角的正切值為時,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個班中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)

分?jǐn)?shù)

甲班頻數(shù)

乙班頻數(shù)

(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)現(xiàn)從上述樣本“成績不優(yōu)秀”的學(xué)生中,抽取人進(jìn)行考核,記“成績不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.

參考公式:,其中

臨界值表

查看答案和解析>>

同步練習(xí)冊答案