科目: 來源: 題型:
【題目】某二手車直賣網(wǎng)站對其所經(jīng)營的一款品牌汽車的使用年數(shù)x與銷售價格y(單位:萬元,輛)進(jìn)行了記錄整理,得到如下數(shù)據(jù):
(I)畫散點(diǎn)圖可以看出,z與x有很強(qiáng)的線性相關(guān)關(guān)系,請求出z與x的線性回歸方程(回歸系數(shù)精確到0.01);
(II)求y關(guān)于x的回歸方程,并預(yù)測某輛該款汽車當(dāng)使用年數(shù)為10年時售價約為多少.
參考公式:
參考數(shù)據(jù):
查看答案和解析>>
科目: 來源: 題型:
【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.
其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨(dú)購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.
表1:一級濾芯更換頻數(shù)分布表
一級濾芯更換的個數(shù) | 8 | 9 |
頻數(shù) | 60 | 40 |
圖2:二級濾芯更換頻數(shù)條形圖
以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】下表中的數(shù)陣為“森德拉姆數(shù)篩”,其特點(diǎn)是每行每列都成等差數(shù)列,則數(shù)字2019在表中出現(xiàn)的次數(shù)為________
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)探究函數(shù)在上的單調(diào)性;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果函數(shù)在定義域的某個區(qū)間上的值域恰為,則稱函數(shù)為上的等域函數(shù),稱為函數(shù)的一個等域區(qū)間.
(1)若函數(shù),,則函數(shù)存在等域區(qū)間嗎?若存在,試寫出其一個等域區(qū)間,若不存在,說明理由
(2)已知函數(shù),其中且,,.
(。┊(dāng)時,若函數(shù)是上的等域函數(shù),求的解析式;
(ⅱ)證明:當(dāng),時,函數(shù)不存在等域區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了釋放學(xué)生壓力,某校高三年級一班進(jìn)行了一個投籃游戲,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置,甲先投,每人投一次籃,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.
(1)經(jīng)過1輪投籃,記甲的得分為,求的分布列及期望;
(2)用表示經(jīng)過第輪投籃后,甲的累計得分高于乙的累計得分的概率,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐P—ABCD中,PA⊥平面ABCD,∠DAB=∠ADC=90°,DC=AB,F(xiàn),M分別是線段PC,PB的中點(diǎn).
(1)在線段AB上找出一點(diǎn)N,使得平面CMN∥平面PAD,并給出證明過程;
(2)若PA=AB,DC=AD,求二面角C—AF—D的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)若在上的最小值為3,求實(shí)數(shù)的值以及相應(yīng)的的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為橢圓:的右焦點(diǎn),橢圓上任意一點(diǎn) 到點(diǎn)的距離與點(diǎn)到直線:
的距離之比為。
(1)求直線方程;
(2)設(shè)為橢圓的左頂點(diǎn),過點(diǎn)的直線交橢圓于、兩點(diǎn),直線、與直線分別相交于、兩點(diǎn),以為直徑的圓是否恒過一定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知(,且).
(1)當(dāng)(其中,且t為常數(shù))時,是否存在最小值,如果存在,求出最小值;如果不存在,請說明理由;
(2)當(dāng)時,求滿足不等式的實(shí)數(shù)x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com