科目: 來源: 題型:
【題目】已知橢圓
(1)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(2)是否存在過點的直線與橢圓相交于,兩點,且滿足.若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直三棱柱中,,,點,,分別為棱,,的中點.
(1)求證:平面;
(2)求二面角的大。
(3)在線段上是否存在一點,使得直線與平面所成的角為?如果存在,求出線段的長;如果不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)且).
(1)判斷函數(shù)在上的單調(diào)性,并證明你的結(jié)論;
(2)當(dāng)時,若不等式對于恒成立,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線是由到兩個定點和點的距離之積等于的所有點組成的.對于曲線,有下列四個結(jié)論:
①曲線是軸對稱圖形;
②曲線是中心對稱圖形;
③曲線上所有的點都在單位圓內(nèi);
其中,所有正確結(jié)論的序號是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,(為自然對數(shù)的底數(shù)),且曲線與在坐標(biāo)原點處的切線相同.
(1)求的最小值;
(2)若時,恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個階段后得到銷售單價和月銷售量之間的一組數(shù)據(jù),如下表所示:
銷售單價(元) | 9 | 9.5 | 10 | 10.5 | 11 |
月銷售量(萬件) | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程,并預(yù)測月銷售量不低于12萬件時銷售單價的最大值;
(2)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎勵.現(xiàn)用樣本估計總體,從上述5個銷售單價中任選2個銷售單價,下個月分別在兩個不同的網(wǎng)店進行銷售,求這兩個網(wǎng)店下個月獲得獎勵的總額的分布列及其數(shù)學(xué)期望.
參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知(,為此函數(shù)的定義域)同時滿足下列兩個條件:①函數(shù)在內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間,使函數(shù)在區(qū)間上的值域為,那么稱,為閉函數(shù);
請解答以下問題:
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若是閉函數(shù),求實數(shù)的取值范圍;
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)列,中,已知,,且,,成等差數(shù)列,,,也成等差數(shù)列.
求證:是等比數(shù)列;
設(shè)m是不超過100的正整數(shù),求使成立的所有數(shù)對.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
若函數(shù)在內(nèi)有且只有一個零點,求此時函數(shù)的單調(diào)區(qū)間;
當(dāng)時,若函數(shù)在上的最大值和最小值的和為1,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com