科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線L:(為參數(shù)),曲線(為參數(shù))
(Ⅰ)設(shè)與相交于兩點(diǎn),求;
(Ⅱ)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個動點(diǎn),求它到直線距離的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為橢圓的右焦點(diǎn),點(diǎn)在上,且軸.
(1)求的方程;
(2)過的直線交于兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】2020年寒假是特殊的寒假,因?yàn)榭箵粢咔槿w學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機(jī)抽取120名學(xué)生對線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為11:13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計(jì) | |
男生 | 20 | ||
女生 | 15 | ||
合計(jì) | 120 |
(2)從被調(diào)查的對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),則以下結(jié)論正確的是( )
A.函數(shù)的單調(diào)減區(qū)間是
B.函數(shù)有且只有1個零點(diǎn)
C.存在正實(shí)數(shù),使得成立
D.對任意兩個正實(shí)數(shù),,且,若則
查看答案和解析>>
科目: 來源: 題型:
【題目】(
已知函數(shù),()
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】十九大提出,加快水污染防治,建設(shè)美麗中國.根據(jù)環(huán)保部門對某河流的每年污水排放量(單位:噸)的歷史統(tǒng)計(jì)數(shù)據(jù),得到如下頻率分布表:
將污水排放量落入各組的頻率作為概率,并假設(shè)每年該河流的污水排放量相互獨(dú)立.
(1)求在未來3年里,至多1年污水排放量的概率;(2)該河流的污水排放對沿河的經(jīng)濟(jì)影響如下:當(dāng)時,沒有影響;當(dāng)時,經(jīng)濟(jì)損失為10萬元;當(dāng)時,經(jīng)濟(jì)損失為60萬元.為減少損失,現(xiàn)有三種應(yīng)對方案:
方案一:防治350噸的污水排放,每年需要防治費(fèi)3.8萬元;
方案二:防治310噸的污水排放,每年需要防治費(fèi)2萬元;
方案三:不采取措施.
試比較上述三種文案,哪種方案好,并請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com