科目: 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)已知函數(shù)為偶函數(shù),求的值;
(Ⅱ)若,證明:當(dāng)時(shí),;
(Ⅲ)若在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某花卉企業(yè)引進(jìn)了數(shù)百種不同品種的康乃馨,通過(guò)試驗(yàn)田培育,得到了這些康乃馨種子在當(dāng)?shù)丨h(huán)境下的發(fā)芽率,并按發(fā)芽率分為組:、、、加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.企業(yè)對(duì)康乃馨的種子進(jìn)行分級(jí),將發(fā)芽率不低于的種子定為“級(jí)”,發(fā)芽率低于但不低于的種子定為“級(jí)”,發(fā)芽率低于的種子定為“級(jí)”.
(Ⅰ)現(xiàn)從這些康乃馨種子中隨機(jī)抽取一種,估計(jì)該種子不是“級(jí)”種子的概率;
(Ⅱ)該花卉企業(yè)銷(xiāo)售花種,且每份“級(jí)”、“級(jí)”、“級(jí)”康乃馨種子的售價(jià)分別為元、元、元.某人在市場(chǎng)上隨機(jī)購(gòu)買(mǎi)了該企業(yè)銷(xiāo)售的康乃馨種子兩份,共花費(fèi)元,以頻率為概率,求的分布列和數(shù)學(xué)期望;
(Ⅲ)企業(yè)改進(jìn)了花卉培育技術(shù),使得每種康乃馨種子的發(fā)芽率提高到原來(lái)的倍,那么對(duì)于這些康乃馨的種子,與舊的發(fā)芽率數(shù)據(jù)的方差相比,技術(shù)改進(jìn)后發(fā)芽率數(shù)據(jù)的方差是否發(fā)生變化?若發(fā)生變化,是變大了還是變小了?(結(jié)論不需要證明).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】從①前項(xiàng)和,②,③且,這三個(gè)條件中任選一個(gè),補(bǔ)充到下面的問(wèn)題中,并完成解答.
在數(shù)列中,,_______,其中.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)若成等比數(shù)列,其中,且,求的最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在四棱錐中,底面是正方形,底面,,、、分別是棱、、的中點(diǎn),對(duì)于平面截四棱錐所得的截面多邊形,有以下三個(gè)結(jié)論:
①截面的面積等于;
②截面是一個(gè)五邊形;
③截面只與四棱錐四條側(cè)棱中的三條相交.
其中,所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知過(guò)橢圓的焦點(diǎn),且橢圓的中心關(guān)于直線的對(duì)稱(chēng)點(diǎn)的橫坐標(biāo)為(為橢圓的焦距).
(1)求橢圓的方程;
(2)是否存在過(guò)點(diǎn),且交橢圓于點(diǎn)的直線,滿足.若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖1,在四邊形中,,,,.把沿著翻折至的位置,平面,連結(jié),如圖2.
(1)當(dāng)時(shí),證明:平面平面;
(2)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)到平面的距離.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某省確定從2021年開(kāi)始,高考采用“”的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、外語(yǔ),為必考科目;“1”表示從物理、歷史中任選一門(mén);“2”則是從生物、化學(xué)、地理、政治中選擇兩門(mén),共計(jì)六門(mén)考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開(kāi)設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)杳(假定每名學(xué)生在這兩個(gè)科目中必須洗擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;
性別 | 選擇物理 | 選擇歷史 | 總計(jì) |
男生 | 50 | ||
女生 | 30 | ||
總計(jì) |
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:只要,必有,則稱(chēng)具有性質(zhì).
(1)若具有性質(zhì),且,求;
(2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是等比數(shù)列,,,.判斷是否具有性質(zhì),并說(shuō)明理由;
(3)設(shè)是無(wú)窮數(shù)列,已知.求證:“對(duì)任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)分別為橢圓C的左右頂點(diǎn),點(diǎn)P在橢圓C上,直線AP,BP分別與直線相交于點(diǎn)M,N.當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以M,N為直徑的圓是否經(jīng)過(guò)軸上的定點(diǎn)?試證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com