科目: 來源: 題型:
【題目】2019年7月1日到3日,世界新能源汽車大會在海南博鰲召開,大會著眼于全球汽車產業(yè)的轉型升級和生態(tài)環(huán)境的持續(xù)改善.某汽車公司順應時代潮流,最新研發(fā)了一款新能源汽車,并在出廠前對100輛汽車進行了單次最大續(xù)航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠里程)的測試.現(xiàn)對測試數據進行分析,得到如圖的頻率分布直方圖.
(1)估計這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數據用該組區(qū)間的中點值代表);
(2)根據大量的汽車測試數據,可以認為這款汽車的單次最大續(xù)航量程X近似地服從正態(tài)分布,經計算第(1)問中樣本標準差s的近似值為50.用樣本平均數作為的近似值,用樣本標準差s作為的估計值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率;
(3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據拋擲硬幣的結果,操控微型遙控車在方格圖上行進,若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券.已知硬幣出現(xiàn)正,反面的概率都是,方格圖上標有第0格、第1格、第2格……第50格.遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次,若擲出正面,遙控車向前移動一格(從k到),若擲出反面,遙控車向前移動兩格(從k到),直到遙控車移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結束.設遙控車移到第n格的概率為,試證明是等比數列,并解釋此方案能否成功吸引顧客購買該款新能源汽車.
參考數據:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列四個命題:①在回歸模型中,預報變量y的值不能由解釋變量x唯一確定;②若變量x,y滿足關系,且變量y與z正相關,則x與z也正相關;③在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;④以模型去擬合一組數據時,為了求出回歸方程,設,將其變換后得到線性方程,則,.
其中真命題的個數為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】《周髀算經》中有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數列,冬至、立春、春分日影長之和為31.5尺,前九個節(jié)氣日影長之和為85.5尺,則小滿日影長為( )
A.1.5尺B.2.5尺C.3.5尺D.4.5尺
查看答案和解析>>
科目: 來源: 題型:
【題目】“割圓術”是劉徽最突出的數學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數值,這個結果是當時世界上圓周率計算的最精確數據.如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數據:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目: 來源: 題型:
【題目】依據某地某條河流8月份的水文觀測點的歷史統(tǒng)計數據所繪制的頻率分布直方圖如圖(甲)所示;依據當地的地質構造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.
試估計該河流在8月份水位的中位數;
(1)以此頻率作為概率,試估計該河流在8月份發(fā)生1級災害的概率;
(2)該河流域某企業(yè),在8月份,若沒受1、2級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.
現(xiàn)此企業(yè)有如下三種應對方案:
方案 | 防控等級 | 費用(單位:萬元) |
方案一 | 無措施 | 0 |
方案二 | 防控1級災害 | 40 |
方案三 | 防控2級災害 | 100 |
試問,如僅從利潤考慮,該企業(yè)應選擇這三種方案中的哪種方案?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術;蘊含了極致的數學美和豐富的傳統(tǒng)文化信息,現(xiàn)有一幅剪紙的設計圖,其中的4個小圓均過正方形的中心,且內切于正方形的兩鄰邊.若在正方形內隨機取一點,則該點取自黑色部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的參數方程為(為參數),直線的參數方程為(為參數),設與的交點為,當變化時, 的軌跡為曲線.
(1)寫出的普遍方程及參數方程;
(2)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,設曲線的極坐標方程為, 為曲線上的動點,求點到的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com