科目: 來源: 題型:
【題目】已知函數(shù),若存在常數(shù),對任意都有,則稱函數(shù)為T倍周期函數(shù).
(1)判斷是否是T倍周期函數(shù),并說明理由;
(2)證明是T倍周期函數(shù),且T的值是唯一的;
(3)若是2倍周期函數(shù),,,表示的前n項和,,若恒成立,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,曲線由兩個橢圓:和橢圓:組成,當(dāng)成等比數(shù)列時,稱曲線為“貓眼曲線”.
(1)若貓眼曲線過點,且的公比為,求貓眼曲線的方程;
(2)對于題(1)中的求貓眼曲線,任作斜率為且不過原點的直線與該曲線相交,交橢圓所得弦的中點為M,交橢圓所得弦的中點為N,求證:為與無關(guān)的定值;
(3)若斜率為的直線為橢圓的切線,且交橢圓于點,為橢圓上的任意一點(點與點不重合),求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在一條景觀道的一端有一個半徑為米的圓形摩天輪O,逆時針分鐘轉(zhuǎn)一圈,從處進(jìn)入摩天輪的座艙,垂直于地面,在距離處米處設(shè)置了一個望遠(yuǎn)鏡.
(1)同學(xué)甲打算獨自乘坐摩天輪,但是其母親不放心,于是約定在登上摩天輪座艙分鐘后,在座艙內(nèi)向其母親揮手致意,而其母親則在望遠(yuǎn)鏡中仔細(xì)觀看.問望遠(yuǎn)鏡的仰角應(yīng)調(diào)整為多少度?(精確到1度)
(2)在同學(xué)甲向其母親揮手致意的同時,同一座艙的另一名乘客乙在拍攝地面上的一條綠化帶,發(fā)現(xiàn)取景的視角恰為,求綠化帶的長度(精確到1米)
查看答案和解析>>
科目: 來源: 題型:
【題目】某農(nóng)場規(guī)劃將果樹種在正方形的場地內(nèi).為了保護(hù)果樹不被風(fēng)吹,決定在果樹的周圍種松樹. 在下圖里,你可以看到規(guī)劃種植果樹的列數(shù)(n),果樹數(shù)量及松樹數(shù)量的規(guī)律:
(1)按此規(guī)律,n = 5時果樹數(shù)量及松樹數(shù)量分別為多少;并寫出果樹數(shù)量,及松樹數(shù)量關(guān)于n的表達(dá)式
(2)定義: 為增加的速度;現(xiàn)農(nóng)場想擴(kuò)大種植面積,問:哪種樹增加的速度會更快?并說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某人打算做一個正四棱錐形的金字塔模型,先用木料搭邊框,再用其他材料填充,已知金字塔的每一條棱和邊都相等.
(1)求證:直線AC垂直于直線SD;
(2)若搭邊框共使用木料24米,則需要多少立方米的填充材料才能將整個金字塔內(nèi)部填滿?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是定義在上的奇函數(shù),當(dāng)時,,當(dāng)時,,若直線與函數(shù)的圖象恰有11個不同的公共點,則實數(shù)的取值范圍為____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列的首項為p,公差為,對于不同的自然數(shù),直線與軸和指數(shù)函數(shù)的圖象分別交于點與(如圖所示),記的坐標(biāo)為,直角梯形、的面積分別為和,一般地記直角梯形的面積為.
(1)求證:數(shù)列是公比絕對值小于1的等比數(shù)列;
(2)設(shè)的公差,是否存在這樣的正整數(shù),構(gòu)成以,,為邊長的三角形?并請說明理由;
(3)設(shè)的公差為已知常數(shù),是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列各項的和?并請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列的首項為p,公差為,對于不同的自然數(shù),直線與軸和指數(shù)函數(shù)的圖象分別交于點與(如圖所示),記的坐標(biāo)為,直角梯形、的面積分別為和,一般地記直角梯形的面積為.
(1)求證:數(shù)列是公比絕對值小于1的等比數(shù)列;
(2)設(shè)的公差,是否存在這樣的正整數(shù),構(gòu)成以,,為邊長的三角形?并請說明理由;
(3)設(shè)的公差為已知常數(shù),是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列各項的和?并請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)和.
(1)為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個不相等的實根,當(dāng)時判斷在上的單調(diào)性;
(3)當(dāng)時,問是否存在x的值,使?jié)M足且的任意實數(shù)a,不等式恒成立?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)和函數(shù),
(1)若為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個不等的實根,則
①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說明理由;
②若方程的兩實根為求使成立的的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com