科目: 來源: 題型:
【題目】已知某單位甲、乙、丙三個部門共有員工60人,為調(diào)查他們的睡眠情況,邐過分層抽樣獲得12名員工每天睡眠的時間,數(shù)據(jù)如下表(單位:小時)
甲部門 | 6 | 7 | 8 | ||
乙部門 | 6 | 6.5 | 7 | 7.5 | |
丙部門 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門的員工人數(shù);
(2)若將每天睡眠時間不少于7小時視為睡眠充足,現(xiàn)從該單位任抽取1人,估計抽到的此人為睡眠充足者的概率;
(3)從甲部門和乙部門抽出的員工中,各隨機(jī)選取一人,甲部門選出的員工記為A,乙部門選出的員工記為B.假設(shè)所有員工睡眠的時間相互獨立.求A的睡眠時間不少于B的睡眠時間的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,PA平面ABCD,EB//PA,AB=PA=4,EB=2,F(xiàn)為PD的中點.
(1)求證AFPC
(2)BD//平面PEC
(3)求二面角D-PC-E的大小
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求曲線在處的切線方程;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若函數(shù),當(dāng)時, 的最大值為,求證: .
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分16分)已知,,都是各項不為零的數(shù)列,且滿足,,其中是數(shù)列的前項和,是公差為的等差數(shù)列.
(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項公式;
(2)若(是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;
(3)若(為常數(shù),), ,求證:對任意的,數(shù)列單調(diào)遞減.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價均為每平方米100元.若圍圍墻用了20000元,問如何圍可使竹籬笆用料最?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(且).
(1)若的定義域為,判斷的單調(diào)性,并加以說明;
(2)當(dāng)時,是否存在,,使得在區(qū)間上的值域為,若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的最大值;
(2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實數(shù)解,求正數(shù)的值
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:過點,過坐標(biāo)原點作兩條互相垂直的射線與橢圓分別交于,兩點.
(1)證明:當(dāng)取得最小值時,橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:
AQI | ||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.
(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;
(ii)試問該企業(yè)7月、8月、9月這三個月因氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會超過2.88萬元?說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com