相關(guān)習(xí)題
 0  266083  266091  266097  266101  266107  266109  266113  266119  266121  266127  266133  266137  266139  266143  266149  266151  266157  266161  266163  266167  266169  266173  266175  266177  266178  266179  266181  266182  266183  266185  266187  266191  266193  266197  266199  266203  266209  266211  266217  266221  266223  266227  266233  266239  266241  266247  266251  266253  266259  266263  266269  266277  266669 

科目: 來源: 題型:

【題目】已知ab,c分別為ABC三個內(nèi)角A,B,C的對邊,2bcosA=acosC+ccosA

1)求角A的大;

2)若a=3,ABC的周長為8,求ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)求的極坐標(biāo)方程;

(Ⅱ)射線與圓C的交點為與直線的交點為,求的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fx)=|xa||x2|1

1)當(dāng)a1時,求不等式fx≥0的解集;

2)當(dāng)fx≤1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線C的參數(shù)方程為φ為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1)直線l與曲線C是否有公共點?并說明理由;

2)若直線l與兩坐標(biāo)軸的交點為AB,點P是曲線C上的一點,求△PAB的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線Cx22pyp0)的焦點為(0,1

1)求拋物線C的方程;

2)設(shè)直線l2ykx+m與拋物線C有唯一公共點P,且與直線l1y=﹣1相交于點Q,試問,在坐標(biāo)平面內(nèi)是否存在點N,使得以PQ為直徑的圓恒過點N?若存在,求出點N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在長方體ABCDA1B1C1D1中,底面ABCD是邊長為2的正方形,EAB的中點,FBC的中點

1)求證:EF∥平面A1DC1;

2)若長方體ABCDA1B1C1D1中,夾在平面A1DC1與平面B1EF之間的幾何體的體積為,求點D到平面B1EF的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為ab,c,且(a+bc)(sinA+sinB+sinC)=bsinA

1)求C;

2)若a2,c5,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校為了了解高一新生是否愿意參加軍訓(xùn),隨機調(diào)查了80名新生,得到如下2×2列聯(lián)表

愿意

不愿意

合計

x

5

M

y

z

40

合計

N

25

80

1)寫出表中x,y,z,M,N的值,并判斷是否有99.9%的把握認(rèn)為愿意參加軍訓(xùn)與性別有關(guān);

2)在被調(diào)查的不愿意參加軍訓(xùn)的學(xué)生中,隨機抽出3人,記這3人中男生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

參考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fx)=aex2x+1

1)當(dāng)a1時,求函數(shù)fx)的極值;

2)若fx)>0xR成立,求實數(shù)a的取值范圍

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù).

1)若,判斷函數(shù)是否存在極值,若存在,求出極值:若不存在,說明理由:

2)若上恒成立,求實數(shù)的取值范圍:

3)若函數(shù)存在兩個極值點,證明:

查看答案和解析>>

同步練習(xí)冊答案