科目: 來源: 題型:
【題目】如圖,設橢圓的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且0,若過 A,Q,F(xiàn)2三點的圓恰好與直線相切,過定點 M(0,2)的直線與橢圓C交于G,H兩點(點G在點M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設直線的斜率,在x軸上是否存在點P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請說明理由;(Ⅲ)若實數(shù)滿足,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.
(1)證明:當取得最小值時,橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質量,某城市環(huán)保局隨機抽取了一年內100天的空氣質量指數(shù)(AQI)的檢測數(shù)據(jù),結果統(tǒng)計如表:
AQI | ||||||
空氣質量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 重度污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天因空氣質量造成的經(jīng)濟損失y(單位:元)與空氣質量指數(shù)x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質量對應的概率以表中100天的空氣質量的頻率代替.
(i)記該企業(yè)9月每天因空氣質量造成的經(jīng)濟損失為X元,求X的分布列;
(ii)試問該企業(yè)7月、8月、9月這三個月因空氣質量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐E﹣ABCD的側棱DE與四棱錐F﹣ABCD的側棱BF都與底面ABCD垂直,,//,.
(1)證明://平面BCE.
(2)設平面ABF與平面CDF所成的二面角為θ,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目: 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質量,某城市環(huán)保局隨機抽取了一年內100天的空氣質量指數(shù)()的檢測數(shù)據(jù),結果統(tǒng)計如下:
空氣質量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質量指數(shù)的關系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù),,其中,為正實數(shù).
(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;
(2)設,證明:對任意,都有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com