10.如圖所示,在xOy豎直平面內(nèi)第二象限又相互垂直的勻強電場和勻強磁場.電場強度E1=2500N/C,方向豎直向上;磁感應強度B=103T,方向垂直紙面向外;有一質(zhì)量m=1×10-2kg、電荷量q=4×10-5C的帶正電小球自P點沿x軸方向成30°角以速度v0=4m/s的速度射入復合場中,之后小球恰好從O點進入與x軸成75°的勻強電場中,該電場電場強度E2=1250$\sqrt{2}$N/C,不計空氣阻力,g取10m/s2.求:
(1)P點的空間位置坐標;
(2)小球經(jīng)過O點后從Q點離開勻強電場E2,試確定Q點的空間位置坐標;
(3)小球從P點到達Q點,經(jīng)歷多長時間.

分析 (1)粒子在復合場中電場力和重力平衡,則只在洛侖茲力的作用下做勻速圓周運動,由牛頓第二定律可知粒子的半徑,由幾何關系可得出兩點間的距離;
(2)粒子在電場中,由于重力和電場力的作用做類平拋運動,建立合適的坐標系,則可由運動的合成與分解求得兩點間的距離.
(3)粒子分別做圓周運動和類平拋運動,分別求出粒子的兩部分運動的時間,求和即可.

解答 解:(1)帶電小球在正交的勻強電場和勻強磁場中受到重力G=mg=0.1N;
電場力F1=Eq=2500N/C×4×10-5C=0.1N
即G=F1,故小球在正交的電場由A到C做勻速圓周運動.
根據(jù)牛頓第二定律可知:Bqv0=m$\frac{{v}_{0}^{2}}{R}$
解得:R=$\frac{m{v}_{0}}{qB}$
代入數(shù)據(jù)得:R=1m
由圓周運動的對稱性可知,粒子在磁場中的偏轉角是60°
由幾何關系得:s1=R=1m;
p點的坐標為:(-1m,0)
(2)帶電小球在C點的速度大小仍為v0=4m/s,方向與水平方向成30°.
由于電場力F2=Eq=0.05$\sqrt{2}$N<0.1N
所以粒子受到的合外力在豎直方向的分力向下,在水平方向的分力向左,粒子在水平方向先向右做減速運動,然后向左減速,從y軸離開電場的范圍;
粒子在水平方向的分速度:${v}_{x}={v}_{0}cos30°=2\sqrt{3}$m/s
水平方向的加速度:${a}_{x}=\frac{{F}_{2}cos75°}{m}=\frac{0.05\sqrt{2}×\frac{\sqrt{6}-\sqrt{2}}{4}}{0.01}$=$2.5(\sqrt{3}-1)$(m/s2
由運動的對稱性可知,當粒子離開電場時,向左的分速度與開始的大小相等,方向相反,所以運動的時間:
$t=\frac{2{v}_{x}}{{a}_{x}}$=$\frac{2×2\sqrt{3}}{2.5\sqrt{3}-2.5}$s=$\frac{4\sqrt{3}(\sqrt{3}+1)}{2.5(\sqrt{3}-1)(\sqrt{3}+1)}$s=$\frac{4(3+\sqrt{3})}{5}$s≈3.786s
豎直方向的分速度:${v}_{y}={v}_{0}sin30°=4m/s×\frac{1}{2}=2$m/s
豎直方向的加速度:${a}_{y}=\frac{mg-{F}_{2}sin75°}{m}=\frac{0.1-0.05×\frac{\sqrt{6}+\sqrt{2}}{4}}{0.01}m/{s}^{2}$=$2.5(3-\sqrt{3})$(m/s2)≈3.17m/s2
粒子在豎直方向上的位移:$y={v}_{y}t+\frac{1}{2}{a}_{y}{t}^{2}$
代入數(shù)據(jù)得:y=30m
所以粒子離開電場的Q點的空間坐標為:(0,-30m)
(3)粒子在磁場中做勻速圓周運動,周期:$T=\frac{2πr}{v}=\frac{2×3.14×1}{4}s=1.57$s
粒子的偏轉角是60°,所以粒子在磁場中運動的時間:$t′=\frac{60°}{360°}•T=\frac{1}{6}T=\frac{1}{6}×1.57s=0.262$s
粒子運動的總時間:t=t+t′=3.786s+0.262s≈4.0s
答:(1)P點的空間位置坐標是(-1m,0);
(2)小球經(jīng)過O點后從Q點離開勻強電場E2,Q點的空間位置坐標是(0,-30m);
(3)小球從P點到達Q點,經(jīng)歷的時間是4.0s.

點評 本題考查帶電粒子在復合場中的運動,要注意當粒子在復合場中做勻速 圓周運動時,粒子受到的電場力與重力平衡.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:填空題

10.一個體積是4×10-3厘米3的氣泡,從18米深的湖底上升,如果湖底水溫是7℃,湖面溫度是27℃,大氣壓強是1.0×105帕,則氣泡升到湖面的體積(g取10米/秒2)為1.2×10-83

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

1.下列說法正確的是(  )
A.牛頓認為質(zhì)量一定的物體其加速度與物體受到的合外力成正比
B.法拉第得出了電荷間的作用力的規(guī)律
C.笛卡爾的理想斜面實驗說明了力不是維持物體運動的原因
D.伽利略認為如果完全排除空氣的阻力,所有物體由靜止釋放后將下落的同樣快

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

18.在“探究加速度與力、質(zhì)量的關系”的實驗中:
(1)為探究加速度與力F的關系,應保持小車的質(zhì)量不變,實驗中應把長木板在小車運動的起始端適當墊高,這樣做是為了平衡摩擦力.
(2)某同學在實驗中得到一條紙帶(如圖),圖中相鄰兩計數(shù)點之間的時間間隔為0.1s,由圖中給出的數(shù)據(jù)計算在打下B點時小車的速度νB=0.0815m/s和小車在此過程中的加速度a=0.195m/s2.(兩問中的計算結果均要求取三位有效數(shù)字)

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

5.如圖所示,兩繩的一端系一個質(zhì)量為m=0.1kg的小球,兩繩的另一端分別固定于軸上的A、B兩處,上面的繩長L=2m,當兩繩都拉直時與轉軸的夾角分別為30°和45°,g取10m/s2,問:
(1)小球的角速度ω在什么范圍內(nèi),兩繩始終張緊?
(2)若兩繩完全相同,兩繩始終張緊,則所選繩子的最大拉力不能小于多少?(保留3位有效數(shù)字)

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

15.兩平行足夠長的光滑金屬導軌水平放置,相距為L,導軌之間以虛線為界分別有豎直向下和向上的勻強磁場,左側磁感應強度為B,右側為2B,M、N兩導體棒垂直放置,處于虛線兩側,如圖所示.已知M、N的質(zhì)量都為m,電阻都為R,導軌電阻不計.現(xiàn)給M棒一水平向右的初速度v,求回路中產(chǎn)生的內(nèi)能?

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

2.如圖甲所示,在雜技表演中,猴子沿豎直桿向上運動,其v-t圖象如圖乙所示.人頂桿沿水平地面運動的s-t圖象如圖丙所示.若以地面為參考系,下列說法中正確的是( 。
A.猴子的運動軌跡為直線B.猴子在前2s內(nèi)做勻變速曲線運動
C.t=0時猴子的速度大小為8m/sD.t=1s時猴子的加速度大小為4m/s2

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

19.下列事例中能說明原子具有核式結構的是( 。
A.光電效應現(xiàn)象的發(fā)現(xiàn)
B.湯姆遜研究陰極射線時發(fā)現(xiàn)了電子
C.盧瑟福的α粒子散射實驗發(fā)現(xiàn)有少數(shù)α粒子發(fā)生大角度偏轉
D.天然放射現(xiàn)象的發(fā)現(xiàn)

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

20.如圖所示,光滑的水平導軌MN右端N處與水平傳送帶理想連接,傳送帶水平長度L=1.6m,皮帶以恒定速率v逆時針勻速運動.傳送帶的右端平滑連接著一個固定在豎直平面內(nèi)、半徑為R=0.4m的光滑半圓軌道PQ,兩個質(zhì)量均為m=0.2kg且可視為質(zhì)點的滑塊A置于水平導軌MN上,開始時滑塊A與墻壁之間有一壓縮的輕彈簧,系統(tǒng)處于靜止狀態(tài).現(xiàn)松開滑塊A,彈簧伸長,滑塊脫離彈簧后滑上傳送帶,從右端滑出并沿半圓軌道運動到最高點Q后水平飛出,又正好落回N點.已知滑塊A與傳送帶之間的動摩擦因數(shù)μ=0.25,取g=10m/s2.求:
(1)滑塊A在半圓軌道P處對軌道的壓力;
(2)壓縮的輕彈簧的彈性勢能EP

查看答案和解析>>

同步練習冊答案