2008年普通高等學校招生全國統(tǒng)一考試
理科數(shù)學(必修+選修Ⅰ)
本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分.第I卷1至2頁,第II卷3至9頁.考試結束后,將本試卷和答題卡一并交回.
第Ⅰ卷
考生注意:
1.答題前,考生在答題卡上務必用0.5毫米黑色墨水簽字筆將自己的姓名、準考證號、填寫清楚 ,并貼好條形碼.請認真核準條形碼上的準考證號、姓名和科目.
2.每小題選出答案后,用2B鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標號.在試題卷上作答無效.
3.本卷共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.
參考公式:
如果事件互斥,那么 球的表面積公式
如果事件相互獨立,那么 其中表示球的半徑
球的體積公式
如果事件在一次試驗中發(fā)生的概率是,那么
次獨立重復試驗中恰好發(fā)生次的概率 其中表示球的半徑
一、選擇題
1.函數(shù)的定義域為( )
A. B.
C. D.
2.汽車經(jīng)過啟動、加速行駛、勻速行駛、減速行駛之后停車,若把這一過程中汽車的行駛路程看作時間的函數(shù),其圖像可能是( )
3.在中,,.若點滿足,則( )
A. B. C. D.
4.設,且為正實數(shù),則( )
A.2 B.1 C.0 D.
5.已知等差數(shù)列滿足,,則它的前10項的和( )
A.138 B.135 C.95 D.23
6.若函數(shù)的圖像與函數(shù)的圖像關于直線對稱,則( )
A. B. C. D.
7.設曲線在點處的切線與直線垂直,則( )
A.2 B. C. D.
8.為得到函數(shù)的圖像,只需將函數(shù)的圖像( )
A.向左平移個長度單位 B.向右平移個長度單位
C.向左平移個長度單位 D.向右平移個長度單位
9.設奇函數(shù)在上為增函數(shù),且,則不等式的解集為( )
A. B.
C. D.
10.若直線通過點,則( )
A. B. C. D.
11.已知三棱柱的側棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于( )
A. B. C. D.
12.如圖,一環(huán)形花壇分成四塊,現(xiàn)有4種不同的花供選種,要求在每塊里種1種花,且相鄰的2塊種不同的花,則不同的種法總數(shù)為( )
2008年普通高等學校招生全國統(tǒng)一考試
理科數(shù)學(必修選修Ⅰ)
第Ⅱ卷
注意事項:
1.答題前,考生先在答題卡上用直徑0.5毫米黑色墨水簽字筆將自己的姓名、準考證號填寫清楚,然后貼好條形碼.請認真核準條形碼上的準考證號、姓名和科目.
2.第Ⅱ卷共7頁,請用直徑0.5毫米黑色墨水簽字筆在答題卡上各題的答題區(qū)域內(nèi)作答,在試題卷上作答無效.
3.本卷共10小題,共90分.
(注意:在試題卷上作答無效)
二、填空題:本大題共4小題,每小題5分,共20分.把答案填在題中橫線上.
13.若滿足約束條件則的最大值為 .
14.已知拋物線的焦點是坐標原點,則以拋物線與兩坐標軸的三個交點為頂點的三角形面積為 .
15.在中,,.若以為焦點的橢圓經(jīng)過點,則該橢圓的離心率 .
16.等邊三角形與正方形有一公共邊,二面角的余弦值為,分別是的中點,則所成角的余弦值等于 .
三、解答題:本大題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.
17.(本小題滿分10分)
(注意:在試題卷上作答無效)
設的內(nèi)角所對的邊長分別為,且.
(Ⅰ)求的值;
(Ⅱ)求的最大值.
18.(本小題滿分12分)
(注意:在試題卷上作答無效)
四棱錐中,底面為矩形,側面底面,,,.
(Ⅰ)證明:;
(Ⅱ)設與平面所成的角為,求二面角的大。
19.(本小題滿分12分)
(注意:在試題卷上作答無效)
已知函數(shù),.
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設函數(shù)在區(qū)間內(nèi)是減函數(shù),求的取值范圍.
20.(本小題滿分12分)
(注意:在試題卷上作答無效)
已知5只動物中有1只患有某種疾病,需要通過化驗血液來確定患病的動物.血液化驗結果呈陽性的即為患病動物,呈陰性即沒患。旅媸莾煞N化驗方法:
方案甲:逐個化驗,直到能確定患病動物為止.
方案乙:先任取3只,將它們的血液混在一起化驗.若結果呈陽性則表明患病動物為這3只中的1只,然后再逐個化驗,直到能確定患病動物為止;若結果呈陰性則在另外2只中任取1只化驗.
(Ⅰ)求依方案甲所需化驗次數(shù)不少于依方案乙所需化驗次數(shù)的概率;
(Ⅱ)表示依方案乙所需化驗次數(shù),求的期望.
21.(本小題滿分12分)
(注意:在試題卷上作答無效)
雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經(jīng)過右焦點垂直于的直線分別交于兩點.已知成等差數(shù)列,且與同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設被雙曲線所截得的線段的長為4,求雙曲線的方程.
22.(本小題滿分12分)
(注意:在試題卷上作答無效)
設函數(shù).數(shù)列滿足,.
(Ⅰ)證明:函數(shù)在區(qū)間是增函數(shù);
(Ⅱ)證明:;
(Ⅲ)設,整數(shù).證明:.
2008年普通高等學校招生全國統(tǒng)一考試
1. C. 由
2. A. 根據(jù)汽車加速行駛,勻速行駛,減速行駛結合函數(shù)圖像可知;
3. A. 由,,;
4. D. ;
5. C. 由;
6. B. 由;
7.D. 由;
8.A. 只需將函數(shù)的圖像向左平移個單位得到函數(shù)的圖像.
9.D.由奇函數(shù)可知,而,則,當時,;當時,,又在上為增函數(shù),則奇函數(shù)在上為增函數(shù),.
10.D.由題意知直線與圓有交點,則.
另解:設向量,由題意知
由可得
11.C.由題意知三棱錐為正四面體,設棱長為,則,棱柱的高(即點到底面的距離),故與底面所成角的正弦值為.
另解:設為空間向量的一組基底,的兩兩間的夾角為
長度均為,平面的法向量為,
則與底面所成角的正弦值為.
12.B.分三類:種兩種花有種種法;種三種花有種種法;種四種花有種種法.共有.
13.答案:9.如圖,作出可行域,
作出直線,將平移至過點處
時,函數(shù)有最大值9.
14. 答案:2.由拋物線的焦點坐標為
為坐標原點得,,則
與坐標軸的交點為,則以這三點圍成的三角形的面積為
15.答案:.設,則
16.答案:.設,作
,則,為二面角的平面角
,結合等邊三角形
與正方形可知此四棱錐為正四棱錐,則
,
故所成角的余弦值
則點,
,
則,
故所成角的余弦值.
17.解析:(Ⅰ)在中,由正弦定理及
可得
即,則;
(Ⅱ)由得
當且僅當時,等號成立,
18.解:(1)取中點,連接交于點,
,,
.
,
,,即,
面,.
(2)在面內(nèi)過點作的垂線,垂足為.
,,面,,
則即為所求二面角的平面角.
,,,
,則,
,即二面角的大。
19. 解:(1)求導:
當時,,,在上遞增
當,求得兩根為
即在遞增,遞減,
遞增
(2),且解得:
20.解:(Ⅰ)解:設、分別表示依方案甲需化驗1次、2次。
、表示依方案乙需化驗2次、3次;
表示依方案甲所需化驗次數(shù)不少于依方案乙所需化驗次數(shù)。
依題意知與獨立,且
∴
(Ⅱ)的可能取值為2,3。
;
∴
∴(次)
21. 解:(Ⅰ)設,,
由勾股定理可得:
得:,,
由倍角公式,解得,則離心率.
(Ⅱ)過直線方程為,與雙曲線方程聯(lián)立
將,代入,化簡有
將數(shù)值代入,有,解得
故所求的雙曲線方程為。
22. 解析:
(Ⅰ)證明:,
故函數(shù)在區(qū)間(0,1)上是增函數(shù);
(Ⅱ)證明:(用數(shù)學歸納法)(i)當n=1時,,,
由函數(shù)在區(qū)間是增函數(shù),且函數(shù)在處連續(xù),則在區(qū)間是增函數(shù),,即成立;
(?)假設當時,成立,即
那么當時,由在區(qū)間是增函數(shù),得
.而,則,
,也就是說當時,也成立;
根據(jù)(?)、(?)可得對任意的正整數(shù),恒成立.
(Ⅲ)證明:由.可得
1, 若存在某滿足,則由⑵知:
2, 若對任意都有,則
,即成立.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com