函數(shù)探究案例

[教學(xué)目標(biāo)]

探究案例一、鋼琴曲線

例1、鋼琴內(nèi)部有許多平行弦構(gòu)成,弦從長(zhǎng)到短依次排列,第一根弦長(zhǎng)為a,第二根弦長(zhǎng)為aq,第三根為aq2,……,后一根與前一根的比都是q。在各弦所在平面內(nèi),以第一根弦所在直線為y軸,各弦底端與弦垂直的直線為x軸,建立直角坐標(biāo)系,將弦的另一端點(diǎn)A1,A2,A3,……,A13用一光滑曲線連接起來(lái),如圖:

試題詳情

(1)寫(xiě)出這些點(diǎn)(xk,yk)所在曲線的函數(shù)關(guān)系式

解答:y=aqx-1

(2)能否由一個(gè)指數(shù)函數(shù)的圖象經(jīng)過(guò)平移得到(1)中所得函數(shù)的圖象,如果可以,寫(xiě)出其函數(shù)關(guān)系式,并說(shuō)明平移過(guò)程

試題詳情

分析解答:要化成一個(gè)指數(shù)函數(shù),可設(shè)a=qc,這樣c=logqa,有y=qx+c-1=,它可以看作由y=qx沿x軸平移logqa-1個(gè)單位得到

(3)已知弦振動(dòng)的頻率與弦長(zhǎng)成反比,而且每隔12個(gè)弦,音頻變?yōu)樵瓉?lái)的2倍(即音調(diào)提高八度),試求q的值

試題詳情

解答:y1=2y13, a=2aq12q==

說(shuō)明:通過(guò)此例,了解函數(shù)圖象的描點(diǎn)法作圖的實(shí)際背景,進(jìn)一步把握指數(shù)與對(duì)數(shù)的運(yùn)算

試題詳情

探究案例二、教育儲(chǔ)蓄的選擇

例2、A、B、C三個(gè)家庭各有余款2萬(wàn)元,準(zhǔn)備將來(lái)為子女上大學(xué)用而存入銀行教育儲(chǔ)蓄,教育儲(chǔ)蓄分三年、六年、九年三個(gè)等級(jí),有工行和建行兩個(gè)銀行都可以存入,都不計(jì)利息稅,其年利率與結(jié)算方式見(jiàn)下表:

銀行

三年期%

六年期%

九年期%

結(jié)算方式

工行

2

試題詳情

2.25

3

以單利計(jì)息:每年只以本金計(jì)利息,即:利息=本金×年利率×年數(shù)

建行

試題詳情

1.75

試題詳情

2.25

試題詳情

2.75

以復(fù)利計(jì)息:每年以前幾年的本利和計(jì)息

(1)如果A、B、C三個(gè)家庭分別計(jì)劃存三年、六年、九年,試說(shuō)明:三個(gè)家庭各應(yīng)選存的銀行,并求出到時(shí)取出的本利和(精確到整數(shù)元)

試題詳情

解答:A家庭:y=2×(1+3×2%)=2.12(萬(wàn)元)=21200元,y=2×(1+1.75)3=2.1067(萬(wàn)元)≈21067元,所以家庭A選工行,到期本利共21200元

試題詳情

B家庭:y=2×(1+3×2.25%)=2.135(萬(wàn)元)=21350元,y=2×(1+2.25)3=2.1381(萬(wàn)元)≈21381元,所以家庭B選建行,到期本利共21381元

試題詳情

C家庭:y=2×(1+3×3%)=2.18(萬(wàn)元)=21800元,y=2×(1+2.75)3=2.1696(萬(wàn)元)≈21696元,所以家庭C選工行,到期本利共21696元

試題詳情

(2)如果國(guó)家政策調(diào)整為:建行教育儲(chǔ)蓄統(tǒng)一調(diào)整為2%,工行統(tǒng)一調(diào)整為2.25%,結(jié)算方式不變,存款年限可以為1~9中的任何一年,試說(shuō)明對(duì)存款者而言,在什么情況下在工行、什么情況下在建行存款更有利?

試題詳情

解答:設(shè)本金為a元,經(jīng)過(guò)x年,y=a(1+2%)x=a1.02x,y=a(1+2.25%x)=a(1+0.0225x)

試題詳情

作y=1.02x,與y=0.0225x+1的圖象,有交點(diǎn)為(0,1),在正整數(shù)集上恒有1.02x>0.0225x+1

故選建行

(3)由此探究在a>1時(shí),指數(shù)函數(shù)y=ax與一次函數(shù)y=cx+d(c≠0)交點(diǎn)的個(gè)數(shù)。

(至多兩個(gè))

說(shuō)明,通過(guò)此例,體會(huì)上學(xué)不易的現(xiàn)實(shí),了解函數(shù)零點(diǎn)分布的特征與圖象的關(guān)系。

試題詳情

探究案例三、如何作函數(shù)y=x+(k為正常數(shù))的大致圖象?

例3、如何作函數(shù)y=x+(k為正常數(shù))的大致圖象?

分析:作一個(gè)函數(shù)圖象,用描點(diǎn)法難于畫(huà)出時(shí),一般先考慮函數(shù)的性質(zhì),如:如果奇偶性,可以先畫(huà)出原點(diǎn)一側(cè)圖象,另一側(cè)對(duì)稱即可;畫(huà)一側(cè)時(shí),可以先考慮單調(diào)性,再考慮它們近似于學(xué)過(guò)的哪個(gè)函數(shù)的圖象。

試題詳情

(1)判斷函數(shù)y=x+的奇偶性

解答:定義域?yàn)閧x|x≠0,x∈R},關(guān)于原點(diǎn)對(duì)稱。而f(-x)=-f(x)所以函數(shù)為奇函數(shù)

試題詳情

(2)判斷函數(shù)y=x+在x>0上的單調(diào)性

試題詳情

解:對(duì)于任意x2>x1>0,f(x2)-f(x1)= (x1x2-k), >0,而x22>x1x2>x12,f(x2)>f(x1),∴如果x12≥k,則x1x2-k>0, f(x2)>f(x1),f(x) ↑,此時(shí)x1;如果x22<k,x1x2-k<0,f(x2)<f(x1),f(x) 單調(diào)減 ,此時(shí)x2<.從而,在x>0上,函數(shù)y=x+的單調(diào)增區(qū)間是,減區(qū)間為

試題詳情

(3)函數(shù)f(x)= x+在x>0上位置如何?又如何彎曲?

試題詳情

解:f(x)= x+>x,說(shuō)明在x>0上,函數(shù)的圖象在y=x的上方;其次,在x無(wú)限增大時(shí),f(x)無(wú)限趨近于x,說(shuō)明函數(shù)圖象無(wú)限趨近y=x;在無(wú)限趨近于0時(shí),f(x)無(wú)限趨近于,說(shuō)明它與一個(gè)反比例函數(shù)圖象很接近。

 (4)作出函數(shù)在x>0上的草圖,從而得到在定義域上草圖。通過(guò)圖象說(shuō)明函數(shù)的單調(diào)區(qū)間及最值情況。

解:草圖如圖:

試題詳情

試題詳情

函數(shù)f(x)=x+的單調(diào)增區(qū)間是:;單調(diào)減區(qū)間是。函數(shù)在定義域內(nèi)沒(méi)有最值。

說(shuō)明:通過(guò)此例,將二分法近似思想用到函數(shù)圖象上,也對(duì)這一常見(jiàn)函數(shù)有了更清楚的認(rèn)識(shí)。

試題詳情

四、同步試題與解答:

1、在函數(shù)單調(diào)增的定義中,對(duì)區(qū)間D任意x1、x2,如果 x1<x2,f(x1)<f(x2),稱函數(shù)y=f(x)在區(qū)間D上單調(diào)增。如果令x2-x1=d,x1=x,則此定義變形為“對(duì)區(qū)間D內(nèi)任意x及正數(shù)d,x+d在D中,若f(x+d)>f(x),則函數(shù)y=f(x)在區(qū)間D上單調(diào)增”。仿此,寫(xiě)出函數(shù)y=f(x)在區(qū)間D上單調(diào)減的變形定義_________

試題詳情

2、我們學(xué)習(xí)的函數(shù)多數(shù)是可以用列表法、圖象法或解析法表示的,這種函數(shù)稱具體函數(shù),相應(yīng)的不能用這三種表示方法中任何一種表示的稱抽象函數(shù)。有些抽象函數(shù)也有其實(shí)例背景,如:一個(gè)函數(shù)y=f(x)對(duì)任意a,b滿足f(a+b)=f(a)+f(b),這里沒(méi)有明確指明是那個(gè)函數(shù),屬于抽象函數(shù),但是我們知道,一個(gè)函數(shù)y=ax(a≠0)是滿足這個(gè)給出的條件的,我們稱此函數(shù)y=ax(a≠0)為抽象函數(shù)的背景函數(shù)。根據(jù)此規(guī)定,寫(xiě)出滿足下列條件的一個(gè)背景函數(shù)(只寫(xiě)出一個(gè)即可,不必寫(xiě)全)

(1)對(duì)任意a,b,f(ab)=f(a)+f(b);(2) 對(duì)任意a,b,f(a+b)=f(a).f(b);(3) 對(duì)任意a,b,f(ab)=f(a).f(b)

試題詳情

3、一個(gè)函數(shù)y=f(x)既是奇函數(shù),又是偶函數(shù),這樣的函數(shù)解析式為_(kāi)______,這樣的函數(shù)有________個(gè)

試題詳情

4、心理學(xué)家發(fā)現(xiàn),一般情況下,學(xué)生注意力隨教師講課時(shí)間的變化而變化:講課開(kāi)始時(shí),學(xué)生注意力逐步增加,中間有段時(shí)間學(xué)生的注意力保持較為理想狀態(tài),以后學(xué)生注意力逐漸分散。研究發(fā)現(xiàn),注意力y隨時(shí)間t(分鐘)的函數(shù)關(guān)系如下:

試題詳情

y=f(t)=

(1)講課開(kāi)始后第5分鐘與第25分鐘比較,何時(shí)更為集中?

(2)講課開(kāi)始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?

(3)一道綜合題,需要講解24分鐘,但要求學(xué)生注意力最低達(dá)到180,能否經(jīng)過(guò)適當(dāng)安排,老師在學(xué)生注意力達(dá)到所需狀態(tài)下講完此題?說(shuō)明理由。

試題詳情

5、已知函數(shù)f(x)=  (1)計(jì)算f(-7),f(0),f(-4)的值;(2)寫(xiě)出當(dāng)6≤x<10,2≤x<6,-2≤x<2時(shí)函數(shù)f(x)的解析式;  (3)(選作)由此推測(cè)f(x)的解析式

試題詳情

6、銷售甲、乙兩種商品所得的利潤(rùn)分別是P萬(wàn)元和Q萬(wàn)元,它們與投入資金t萬(wàn)元關(guān)系有經(jīng)驗(yàn)公式:P=t,Q=.今將3萬(wàn)元投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲商品投入x萬(wàn)元

(1)寫(xiě)出總利潤(rùn)y萬(wàn)元與x的函數(shù)關(guān)系式

(2)問(wèn)對(duì)甲商品投資多大時(shí),總利潤(rùn)最大,最大為多少萬(wàn)元?

試題詳情

7、某市現(xiàn)有人口100萬(wàn),如果年自然增長(zhǎng)率為1.2%.(1)寫(xiě)出該市人口數(shù)y萬(wàn)與年份x年的函數(shù)關(guān)系式;(2)計(jì)算10年后該市的人口總數(shù)(精確到0.1萬(wàn)人);(3)大約多少年后,人口總數(shù)達(dá)到120萬(wàn)?(4)要使20年后,該市人口不超過(guò)120萬(wàn)人,年自然增長(zhǎng)率應(yīng)控制在多少?

8(選作) (1)作出點(diǎn)(-1,2)、(1,2)、(2,4)關(guān)于直線y=x的對(duì)稱點(diǎn),由此可以得到點(diǎn)(x0,y.0)關(guān)于直線y=x的對(duì)稱點(diǎn)是什么?

(2)由于直線y=x+1相當(dāng)于將直線y=x向左平移一個(gè)單位(或向上平移一個(gè)單位)得到,相應(yīng)的對(duì)稱點(diǎn)也進(jìn)行了平移。以上各點(diǎn)關(guān)于直線y=x+1的對(duì)稱點(diǎn)呢?

(3)點(diǎn)(x0,y0)關(guān)于y=x+b對(duì)稱點(diǎn)為什么呢?

(4)仿上方法探究點(diǎn)(x0,y0)關(guān)于直線y=-x+b的對(duì)稱點(diǎn)又是什么?

(5)由上面你能得到什么一般結(jié)論?

試題詳情

[答案]1、對(duì)區(qū)間D內(nèi)任意x及正數(shù)d,x+d在D中,若f(x+d)<f(x),則函數(shù)y=f(x)在區(qū)間D上單調(diào)減

試題詳情

2、(1)寫(xiě)一個(gè)對(duì)數(shù)函數(shù)即可;(2)寫(xiě)一個(gè)指數(shù)函數(shù);(3)寫(xiě)一個(gè)冪函數(shù)

試題詳情

3、f(x)=0,無(wú)數(shù)個(gè)(定義域關(guān)于原點(diǎn)對(duì)稱即可,隨意)

試題詳情

4、(1)25分鐘; (2)10,10;   (3)求出180之上的時(shí)間為28.57-4>24可以完成

試題詳情

5、(1)f(7)=14,f(0)=15,f(-4)=15

(2) 6≤x<10時(shí),f(x)=x+7;2≤x<6時(shí),f(x)=x+11;-2≤x<2時(shí),f(x)=x+15

試題詳情

(3)f(x)=

試題詳情

6、(1)y=,0≤x≤3;(2)甲投入0.75萬(wàn)元,最大利潤(rùn)1.05萬(wàn)元

試題詳情

7、(1)y=100×1.012x;(2)112.7;(3)15年;(4)0.9%之內(nèi)

試題詳情

8、(1)關(guān)于y=x的對(duì)稱點(diǎn)分別是(2,-1),(2,1),(4,2)如圖1,猜想:點(diǎn)(x0,y.0)關(guān)于y=x的對(duì)稱點(diǎn)為(y0,x0)

(2) 關(guān)于直線y=x+1的對(duì)稱點(diǎn)分別為(1,0),(1,2),(3,3).如圖2

試題詳情

  

(y0-b,x0+b)

(3) (y0-b,x0+b)

(4)點(diǎn)(x0,y0)關(guān)于y=-x+b對(duì)稱點(diǎn)為(b-y0,b-x0)

(5)關(guān)于直線y=±x+b對(duì)稱點(diǎn)規(guī)律:從對(duì)稱軸方程中解出 x,y,再將原來(lái)點(diǎn)的坐標(biāo)代入方程的右邊,即可得到對(duì)稱點(diǎn)的橫、縱坐標(biāo)

 

試題詳情


同步練習(xí)冊(cè)答案