(1)若函數(shù)在時(shí)有極值.求的表達(dá)式, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)在區(qū)間[-1,1),(1,3]內(nèi)各有一個(gè)極值點(diǎn).

(Ⅰ)求a2-4b的最大值;

(Ⅱ)當(dāng)a2-4b=8時(shí),設(shè)函數(shù)y=f(x)在點(diǎn)A(1,f(1))處的切線(xiàn)為l,若在點(diǎn)A處穿過(guò)y=f(x)的圖象(即動(dòng)點(diǎn)在點(diǎn)A附近沿曲線(xiàn)y=f(x)運(yùn)動(dòng),經(jīng)過(guò)點(diǎn)A時(shí),從l的一側(cè)進(jìn)入另一側(cè)),求函數(shù)f(x)的表達(dá)式.

查看答案和解析>>

已知函數(shù)圖像上的點(diǎn)處的切線(xiàn)方程為.

(1)若函數(shù)時(shí)有極值,求的表達(dá)式;

(2)函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

函數(shù),過(guò)曲線(xiàn)上的點(diǎn)的切線(xiàn)方程為.

(1)若時(shí)有極值,求的表達(dá)式;

(2)在(1)的條件下,求在[-3,1]上的最大值;

(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

 

查看答案和解析>>

((12分)已知函數(shù)圖像上的點(diǎn)處的切線(xiàn)方程為.[來(lái)

(1)若函數(shù)時(shí)有極值,求的表達(dá)式;

(2)函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍。

 

 

查看答案和解析>>

函數(shù),過(guò)曲線(xiàn)上的點(diǎn)的切線(xiàn)方程為.
(1)若時(shí)有極值,求的表達(dá)式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

選項(xiàng)

A

C

C

B

D

B

A

D

A

C

D

D

二、填空題

13、45    14、    15、     16、0.94     17、     18、

三、解答題

19、解:f(x)=?(-1)

f(x)=(2x+1)=2?0+1=1

20、:(1)當(dāng)a=2時(shí),A=(2,7),B=(4,5)∴ AB=(4,5)

(2)∵ B=(2a,a2+1),

當(dāng)a<時(shí),A=(3a+1,2)要使BA,必須,此時(shí)a=-1;

當(dāng)a=時(shí),A=,使BA的a不存在;

當(dāng)a>時(shí),A=(2,3a+1)要使BA,必須,此時(shí)1≤a≤3.

綜上可知,使BA的實(shí)數(shù)a的取值范圍為[1,3]∪{-1}

21、解:(1)ξ可能的取值為0,1,2,3.

P(ξ=0)=?==       P(ξ=1)=?+?=

P(ξ=2)=?+?=   P(ξ=3)=?=.

ξ的分布列為

ξ

0

1

2

3

P

數(shù)學(xué)期望為Eξ=1.2.

(2)所求的概率為

p=P(ξ≥2)=P(ξ=2)+P(ξ=3)=+=  

22、解:,(2分)

因?yàn)楹瘮?shù)處的切線(xiàn)斜率為-3,

所以,即,         1

。                   2

(1)函數(shù)時(shí)有極值,所以,    3

解123得,

所以.

(2)因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)在區(qū)間上的值恒大于或等于零,

,所以實(shí)數(shù)的取值范圍為.


同步練習(xí)冊(cè)答案