0  524  532  538  542  548  550  554  560  562  568  574  578  580  584  590  592  598  602  604  608  610  614  616  618  619  620  622  623  624  626  628  632  634  638  640  644  650  652  658  662  664  668  674  680  682  688  692  694  700  704  710  718  447090 

3.(1)∵

          

圖代13-3-21

∴不論m取何值,拋物線與x軸必有兩個(gè)交點(diǎn).

令y=0,得

            ,

∴             .

∴兩交點(diǎn)中必有一個(gè)交點(diǎn)是A(2,0).

(2)由(1)得另一個(gè)交點(diǎn)B的坐標(biāo)是(m2+3,0).

,

試題詳情

∴當(dāng)x=0時(shí),y=4.

當(dāng)時(shí).

即拋物線與y軸的交點(diǎn)為(0,4),與x軸的交點(diǎn)為A(3,0),.

(1)當(dāng)AC=BC時(shí),

.

∴                            

(2)當(dāng)AC=AB時(shí),

.

∴                                 .

∴                            .

當(dāng)時(shí),;

當(dāng)時(shí),.

(3)當(dāng)AB=BC時(shí),

,

∴                              .

∴                          .

可求拋物線解析式為:或.

試題詳情

2.∵,

試題詳情

1.設(shè)每件提高x元(0≤x≤10),即每件可獲利潤(rùn)(2+x)元,則每天可銷售(100-10x)

件,設(shè)每天所獲利潤(rùn)為y元,依題意,得

                            

∴當(dāng)x=4時(shí)(0≤x≤10)所獲利潤(rùn)最大,即售出價(jià)為14元,每天所賺得最大利潤(rùn)360元.

試題詳情

42.如圖代13-3-20,已知拋物線與x軸從左至右交于A,B兩點(diǎn),

與y軸交于點(diǎn)C,且∠BAC=α,∠ABC=β,tgα-tgβ=2,∠ACB=90°.

(1)求點(diǎn)C的坐標(biāo);

(2)求拋物線的解析式;

(3)若拋物線的頂點(diǎn)為P,求四邊形ABPC的面積.

 

參  考  答  案

 

動(dòng)腦動(dòng)手

試題詳情

41.已知直線和,二次函數(shù)圖象的頂點(diǎn)為M.

(1)若M恰在直線與的交點(diǎn)處,試證明:無(wú)論m取何實(shí)數(shù)值,

二次函數(shù)的圖象與直線總有兩個(gè)不同的交點(diǎn).

(2)在(1)的條件下,若直線過點(diǎn)D(0,-3),求二次函數(shù)

的表達(dá)式,并作出其大致圖象.

圖代13-3-20

(3)在(2)的條件下,若二次函數(shù)的圖象與y軸交于點(diǎn)C,與x同

的左交點(diǎn)為A,試在直線上求異于M點(diǎn)P,使P在△CMA的外接圓上.

試題詳情

滿足OA∶OB=4∶3,以O(shè)C為直徑作⊙D,設(shè)⊙D的半徑為2.

圖代13-3-19

(1)求⊙C的圓心坐標(biāo).

(2)過C作⊙D的切線EF交x軸于E,交y軸于F,求直線EF的解析式.

(3)拋物線(a≠0)的對(duì)稱軸過C點(diǎn),頂點(diǎn)在⊙C上,與y軸交點(diǎn)

為B,求拋物線的解析式.

試題詳情

40.如圖代13-3-19,在直角坐標(biāo)系中,以AB為直徑的⊙C交x軸于A,交y軸于B,

試題詳情

39.已知二次函數(shù)的圖象與x軸的交點(diǎn)為

A,B(點(diǎn)A在點(diǎn)B右邊),與y軸的交點(diǎn)為C.

(1)若△ABC為Rt△,求m的值;

(2)在△ABC中,若AC=BC,求∠ACB的正弦值;

(3)設(shè)△ABC的面積為S,求當(dāng)m為何值時(shí),S有最小值,并求這個(gè)最小值.

試題詳情

38.已知:如圖代13-3-18,EB是⊙O的直徑,且EB=6,在BE的延長(zhǎng)線上取點(diǎn)P,使EP=EB.A

是EP上一點(diǎn),過A作⊙O的切線AD,切點(diǎn)為D,過D作DF⊥AB于F,過B作AD的垂線BH,交AD的延長(zhǎng)線于H,連結(jié)ED和FH.

圖代13-3-18

(1)若AE=2,求AD的長(zhǎng).

(2)當(dāng)點(diǎn)A在EP上移動(dòng)(點(diǎn)A不與點(diǎn)E重合)時(shí),①是否總有?試證明

你的結(jié)論;②設(shè)ED=x,BH=y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

試題詳情


同步練習(xí)冊(cè)答案