【題目】隨著“節(jié)能減排、綠色出行”的健康生活意識的普及,新能源汽車越來越多地走進百姓的生活.某汽車租賃公司擁有40輛電動汽車,據統(tǒng)計,當每輛車的日租金為120元時,可全部租出;當每輛車的日租金每增加5元時,未租出的車將增加1輛;該公司平均每日的各項支出共2100元.
(1)若某日共有x輛車未租出,則當日每輛車的日租金為 元;
(2)當每輛車的日租金為多少時,該汽車租賃公司日收益最大?最大日收益是多少?
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AC=6,BC=8,以點C為圓心,CA為半徑的圓與AB,BC分別交于點E,D,則BE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,網格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形.在建立平面直角坐標系后,點B的坐標為(-1,-1).
(1)把△ABC向下平移5格后得到△A1B1C1,寫出點A1,B1,C1的坐標,并畫出△A1B1C1;
(2)把△ABC繞點O按順時針方向旋轉180°后得到△A2B2C2,寫出點A2,B2,C2的坐標,并畫出△A2B2C2;
(3)把△ABC以點O為位似中心放大得到△A3B3C3,使放大前后對應線段的比為1∶2,寫出點A3,B3,C3的坐標,并畫出△A3B3C3.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某足球運動員站在點O處練習射門,將足球從離地面0.5m的A處正對球門踢出(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數關系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.
(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數關系x=10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某紡織廠生產的產品,原來每件出廠價為80元,成本為60元.由于在生產過程中平均每生產一件產品有0.5的污水排出,現(xiàn)在為了保護環(huán)境,需對污水凈化處理后再排出.已知每處理1污水的費用為2元,且每月排污設備損耗為8000元.設現(xiàn)在該廠每月生產產品x件,每月純利潤y元:
(1)求出y與x的函數關系式.(純利潤=總收入-總支出)
(2)當y=106000時,求該廠在這個月中生產產品的件數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(-2,0),點B(0,4),點E在OB上,且∠OAE=∠OBA.
(1)如圖①,求點E的坐標
(2)如圖②,將△AEO沿x軸向右平移得到△A′E′O′,連接A′B,BE′.
①設AA′=m,其中0<m<2,試用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;
②當A′B+BE′取得最小值時,求點E′的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點P0的坐標為(2,0),將點P0繞著原點O按逆時針方向旋轉60°得點P1,延長OP1到點P2,使OP2=2OP1,再將點P2繞著原點O按逆時針方向旋轉60°得點P3,則點P3的坐標是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P為拋物線y=x2上一動點.
(1)若拋物線y=x2是由拋物線y=(x+2)2﹣1通過圖象平移得到的,請寫出平移的過程;
(2)若直線l經過y軸上一點N,且平行于x軸,點N的坐標為(0,﹣1),過點P作PM⊥l于M.
①問題探究:如圖一,在對稱軸上是否存在一定點F,使得PM=PF恒成立?若存在,求出點F的坐標:若不存在,請說明理由.
②問題解決:如圖二,若點Q的坐標為(1.5),求QP+PF的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com