【題目】已知:如圖,在菱形中,對角線、相交于點(diǎn),,.
(1)求證:四邊形是矩形;
(2)若,,求四邊形的面積.
【答案】(1)詳見解析;(2).
【解析】
(1)根據(jù)平行四邊形的判定定理得四邊形AODE為平行四邊形,再根據(jù)菱形的性質(zhì)得出AC⊥BD,由矩形的判定定理得出四邊形AODE是矩形;
(2)由矩形的性質(zhì),得出OA=DE=1.在Rt△AOB中,由勾股定理得出OB的長,由菱形的性質(zhì)得出OD的長,即可求出四邊形AODE的面積.
(1)∵DE∥AC,AE∥BD,∴四邊形AODE是平行四邊形.
∵四邊形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴四邊形AODE是矩形;
(2)∵四邊形AODE是矩形,∴AO=DE=1.
∵AB=2,AC⊥BD,∴OB=.
∵四邊形ABCD是菱形,∴OD=OB,∴四邊形AODE的面積=OAOD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖為某區(qū)域部分交通線路圖,其中直線,直線與直線都垂直,,垂足分別為點(diǎn)A、點(diǎn)B和點(diǎn)C,(高速路右側(cè)邊緣),上的點(diǎn)M位于點(diǎn)A的北偏東30°方向上,且BM=千米,上的點(diǎn)N位于點(diǎn)M的北偏東方向上,且,MN=千米,點(diǎn)A和點(diǎn)N是城際線L上的兩個(gè)相鄰的站點(diǎn).
(1)求之間的距離
(2)若城際火車平均時(shí)速為150千米/小時(shí),求市民小強(qiáng)乘坐城際火車從站點(diǎn)A到站點(diǎn)N需要多少小時(shí)?(結(jié)果用分?jǐn)?shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,中線BE、CF相交于點(diǎn)G,連接EF,下列結(jié)論:
①=; ②=; ③=; ④=.其中正確的個(gè)數(shù)有( )
A. 1個(gè) B. C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2)延長CB交x軸于點(diǎn)A1,作正方形A1B1C1C;延長C1B1交x 軸于點(diǎn)A2,作正方形A2B2C2C1,…按這樣的規(guī)律進(jìn)行下去,第2018個(gè)正方形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 ABCD 中,AB=6cm,AD=8cm,直線 EF 從點(diǎn) A 出發(fā)沿 AD 方向勻速運(yùn)動,速度是 2cm/s,運(yùn)動過程中始終保持 EF∥AC.F 交
AD 于 E,交 DC 于點(diǎn) F;同時(shí),點(diǎn) P 從點(diǎn) C 出發(fā)沿 CB 方向勻速運(yùn)動,速度是 1cm/s,連接 PE、PF,設(shè)運(yùn)動時(shí)間 t(s)(0<t<4).
(1)當(dāng) t=1 時(shí),求 EF 長;
(2)求 t 為何值時(shí),四邊形 EPCD 為矩形;
(3)設(shè)△PEF 的面積為 S(cm2),求出面積 S 關(guān)于時(shí)間 t 的表達(dá)式;
(4)在運(yùn)動過程中,是否存在某一時(shí)刻使 S△PC F:S 矩形 ABCD=3:16?若存在, 求出 t 的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形 ABCD 內(nèi)接于⊙ O ,AC 和 BD 相交于E , BC = CD = 4 , AE = 6 ,且 BE 和 DE 的長是正整數(shù),求 BD 的 長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PB與⊙O相切于點(diǎn)B,過點(diǎn)B作OP的垂線BA,垂足為C,交⊙O于點(diǎn)A,連結(jié)PA,AO,AO的延長線交⊙O于點(diǎn)E,與PB的延長線交于點(diǎn)D.
(1)求證:PA是⊙O的切線;
(2)若tan∠BAD=, 且OC=4,求PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(b≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)(﹣1,0),下面的四個(gè)結(jié)論:①OA=3 ②a+b+c<0 ③ac>0 ④當(dāng)y>0時(shí),﹣1<x<3,其中正確的結(jié)論是( 。
A.②④B.①③C.①④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個(gè)端點(diǎn),交直角邊AC于點(diǎn)E,B、E是半圓弧的三等分點(diǎn),弧BE的長為π,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com