【題目】如圖,四邊形ABCD是正方形,連接AC,將繞點A逆時針旋轉(zhuǎn)α,連接CF,OCF的中點,連接OE,OD

1)如圖1,當(dāng)時,請直接寫出OEOD的關(guān)系(不用證明).

2)如圖2,當(dāng)時,(1)中的結(jié)論是否成立?請說明理由.

3)當(dāng)時,若,請直接寫出點O經(jīng)過的路徑長.

【答案】1,,理由見解析;(2)當(dāng)時,(1)中的結(jié)論成立,理由見解析;(3)點O經(jīng)過的路徑長為

【解析】

1)根據(jù)直角三角形斜邊上的中線等于斜邊一半的性質(zhì)可得ODOE的數(shù)量關(guān)系;根據(jù)旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì)可得AC=AF以及ACF各內(nèi)角的度數(shù),進(jìn)一步即可求出∠COE與∠DOF的度數(shù),進(jìn)而可得ODOE的位置關(guān)系;

2)延長EO到點M,使,連接DM、CMDE,如圖2所示,先根據(jù)SAS證明,得,再根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)推得,進(jìn)一步在ACF中根據(jù)三角形內(nèi)角和定理和正方形的性質(zhì)得出,再一次運(yùn)用SAS推出,于是,進(jìn)一步即可得出OE、OD的位置關(guān)系,然后再運(yùn)用SAS推出,即可得ODOE的數(shù)量關(guān)系;

3)連接AO,如圖3所示,先根據(jù)等腰三角形三線合一的性質(zhì)得出,即可判斷點O的運(yùn)動路徑,由可得點O經(jīng)過的路徑長,進(jìn)一步即可求得結(jié)果.

解:(1,;理由如下:

由旋轉(zhuǎn)的性質(zhì)得:,,

∵四邊形ABCD是正方形,∴

,

,

,OCF的中點,∴,

同理:,∴,

,

,∴;

2)當(dāng)時,(1)中的結(jié)論成立,理由如下:

延長EO到點M,使,連接DM、CM、DE,如圖2所示:

OCF的中點,∴,

中,,

SAS),∴,.

∵四邊形ABCD是正方形,∴,

繞點A逆時針旋轉(zhuǎn)α,

,,

,

,,

,

,,∴,

中,∵

,

,∴,∴

中,

SAS),∴,

,∴,

中,,

SAS),∴.

,∴;

3)連接AO,如圖3所示:

,∴,∴,

∴點O在以AC為直徑的圓上運(yùn)動,

,∴點O經(jīng)過的路徑長等于以AC為直徑的圓的周長,

,∴點O經(jīng)過的路徑長為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:

(1)2017年“五一”期間,該市周邊景點共接待游客 萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計圖.

(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?

(3)甲、乙兩個旅行團(tuán)在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為4,延長使,以為邊在上方作正方形,延長,連接、,的中點,連接分別與交于點.則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由特殊到一般、類比、轉(zhuǎn)化是數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到的思想方法,下面是對一道幾何題進(jìn)行變式探究的思路,請你運(yùn)用上述思想方法完成探究任務(wù).

問題情境:在四邊形中,是對角線,為邊上一點,連接.為旋轉(zhuǎn)中心,將線段順時針旋轉(zhuǎn),旋轉(zhuǎn)角與相等,得到線段,連接

1)特例如圖1,若四邊形是正方形,則位置關(guān)系是_________.此時可以過點的平行線來對結(jié)論進(jìn)行證明(這里不要求證明)

2)拓展探究:如圖2,若四邊形是菱形,當(dāng)時,求的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在綜合實踐活動中對本地的一座古塔進(jìn)行了測量.如圖,他在山坡坡腳P處測得古塔頂端M的仰角為60°,沿山坡向上走25m到達(dá)D處,測得古塔頂端M的仰角為30°.已知山坡坡度i34,即tanθ,請你幫助小明計算古塔的高度ME.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線x軸、y軸分別相交于AB兩點,與反比例函數(shù)在第二象限內(nèi)交于點C,且點B的中點.

1)求點C的坐標(biāo)及k的值;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個矩形的面積為96000000cm2,第一次截去它的,第二次截去剩下的,如此截下去,第六次截去后剩余圖形的面積為_____cm2,用科學(xué)記數(shù)法表示剩余圖形的面積為_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠C=90°,點DAC上,且CD>DA,DA=2.點P、Q同時從D點出發(fā),以相同的速度分別沿射線DC、射線DA運(yùn)動.過點QAC的垂線段QR,使QR=PQ,聯(lián)接PR.當(dāng)點Q到達(dá)A時,點P、Q同時停止運(yùn)動.設(shè)PQ=x△PQR△ABC重合部分的面積為SS關(guān)于x的函數(shù)圖像如圖2所示(其中0<x≤,<x≤m時,函數(shù)的解析式不同)

1)填空:n的值為___________;

2)求S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC頂點的坐標(biāo)分別為A(﹣3,3),B(﹣5,2),C(﹣11).

1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為12,且ABC位于點C的異側(cè),并表示出點A1的坐標(biāo).

2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C

3)在(2)的條件下求出點B經(jīng)過的路徑長(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊答案