【題目】在平面直角坐標(biāo)系中xOy,拋物線y=x2-2(m-1)x+m2-4m+3的頂點(diǎn)為C,直線y=-2x+3與拋物線相交于A、B兩點(diǎn),點(diǎn)A在拋物線的對(duì)稱軸的左側(cè).
(1)求點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)若P為直線OC上一動(dòng)點(diǎn),求△APB的面積;
(3)當(dāng)OA+OB的值最小時(shí),求m的值.
【答案】(1)C(m-1,2-2m);(2)△APB的面積=×4×=6;(3)m的值.
【解析】試題分析:(1)把函數(shù)解析式整理成頂點(diǎn)式形式,然后寫出點(diǎn)的坐標(biāo);
(2)聯(lián)立直線與拋物線求出交點(diǎn)的坐標(biāo),然后求出的長(zhǎng),再根據(jù)AB∥OC求出兩平行線間的距離,最后根據(jù)三角形的面積公式列式計(jì)算即可得解;
分情況進(jìn)行討論即可.
試題解析:(1)拋物線的解析式可化為
(2)∵直線OC的解析式為 ∴AB∥OC.
令AB與x軸、y軸分別交于點(diǎn)D、K,則
過(guò)點(diǎn)O作于點(diǎn)G,
∵
∴ ∴OG=.
∴AB與OC之間的距離為.
解得: 或
∴
∴
∴的面積=×4×=6.
(3)如答圖1,設(shè)點(diǎn)A關(guān)于的對(duì)稱點(diǎn)為A′,則
過(guò)點(diǎn)A作AE∥y軸,A′E∥x軸,AE與A′E交于點(diǎn)E, 則可證
∴,解得
1)當(dāng)點(diǎn)A′在第二象限,由于A′、O、B三點(diǎn)在同一條直線上,B不可能在第一或第二象限.
2)當(dāng)點(diǎn)A′在第二象限時(shí),點(diǎn)B在第四象限時(shí).
分別過(guò)點(diǎn)A′、B作x軸的垂線段,垂足分別為M、N,則
∵ 三點(diǎn)在同一條直線上,
∴ ,解得m=.
3)當(dāng)點(diǎn)A′在第三象限時(shí),m-<0,-2m+<0,即<m<.
此時(shí)點(diǎn)B在第四象限,顯然不成立.
綜上所述,m的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>b,且a≠0,b≠0,a+b≠0,則函數(shù)y=ax+b與在同一坐標(biāo)系中的圖象不可能是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三角形ABC(圖1)和正五邊形DEFGH(圖2)的邊長(zhǎng)相同.點(diǎn)O為△ABC的中心,用5個(gè)相同的△BOC拼入正五邊形DEFGH中,得到圖3,則圖3中的五角星的五個(gè)銳角均為( )
A. 36° B. 42° C. 45° D. 48°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“春節(jié)”是我國(guó)最重要的傳統(tǒng)佳節(jié),北方地區(qū)歷來(lái)有“吃餃子”的習(xí)俗.某餃子廠為了解市民對(duì)去年銷售較好的豬肉大蔥餡、韭菜雞蛋餡、香菇餡、三鮮餡(分別用A、B、C、D表示)這四種不同口味餃子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請(qǐng)根據(jù)所給信息回答:
(1)本次參加抽樣調(diào)查的居民有 人;
(2)將兩幅不完整的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃D種餃子的人數(shù);
(4)若煮熟一盤外形完全相同的A、B、C、D餃子分別有2個(gè)、3個(gè)、5個(gè)、10個(gè),老張從中任吃了1個(gè).求他吃到D種餃子的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)P是邊AD上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)D重合),點(diǎn)Q是邊CD上一點(diǎn),聯(lián)結(jié)PB、PQ,且∠PBC=∠BPQ.
(1)當(dāng)QD=QC時(shí),求∠ABP的正切值;
(2)設(shè)AP=x,CQ=y,求y關(guān)于x的函數(shù)解析式;
(3)聯(lián)結(jié)BQ,在△PBQ中是否存在度數(shù)不變的角?若存在,指出這個(gè)角,并求出它的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與軸交于A、B兩點(diǎn),點(diǎn)P在函數(shù)的圖象上,若△PAB為直角三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)為( ).
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)將一批學(xué)生書包按成本價(jià)提高50%后標(biāo)價(jià),又按標(biāo)價(jià)的80%優(yōu)惠賣出,每個(gè)的售價(jià)是72元.每個(gè)這種書包的成本價(jià)是多少元?利潤(rùn)是多少元?利潤(rùn)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校準(zhǔn)備購(gòu)進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元;
(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)這兩種型號(hào)的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,設(shè)購(gòu)進(jìn)A型節(jié)能燈m只.
①請(qǐng)用含m的代數(shù)式表示總費(fèi)用;
②請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)舉行了百科知識(shí)競(jìng)賽,為了解此次競(jìng)賽成績(jī)的情況,隨機(jī)抽取部分參賽學(xué)生的成績(jī),整理并制作出如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖表信息解答以下問(wèn)題:
組別 | 成績(jī)分 | 頻數(shù) |
組 | ||
組 | ||
組 | ||
組 |
(1)表中___________.
(2)補(bǔ)全頻數(shù)分布直方圖
(3)計(jì)算扇形統(tǒng)計(jì)圖中“”對(duì)應(yīng)的圓心角度數(shù).
(4)該大學(xué)共有人參加競(jìng)賽,若成績(jī)?cè)?/span>分以上(包括分)的為“優(yōu)”等,根據(jù)抽樣結(jié)果,估計(jì)該校參賽學(xué)生成績(jī)達(dá)到“優(yōu)”等的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com