【題目】定義: 在平面直角坐標(biāo)系中,如果點(diǎn)和都在某函數(shù)的圖象上,則稱點(diǎn)是圖象的一對“相關(guān)點(diǎn)”.例如,點(diǎn)和點(diǎn)是直線的一對相關(guān)點(diǎn).
請寫出反比例函數(shù)的圖象上的一對相關(guān)點(diǎn)的坐標(biāo);
如圖,拋物線的對稱軸為直線,與軸交于點(diǎn).
求拋物線的解析式:
若點(diǎn)是拋物線上的一對相關(guān)點(diǎn),直線與軸交于點(diǎn),點(diǎn)為拋物線上之間的一點(diǎn),求面積的最大值.
【答案】(1),;(2)①;②
【解析】
(1)xy=6,當(dāng)x=2時,y=3,當(dāng)x=3時,y=2,即可求解;
(2)①根據(jù)C(0,-1)求得c,根據(jù)x=-1,函數(shù)對稱軸為:x=-=-1,解得:b=-2,即可求解;
②由“相關(guān)點(diǎn)”的定義,可得直線MN的表達(dá)式,求出點(diǎn)M、N的坐標(biāo),將△PMN面積利用S=×PQ×(xM-xN)表示出來即可求解.
解:(1)xy=6,當(dāng)x=2時,y=3,當(dāng)x=3時,y=2,
故答案為:(2,3)和(3,2);
(2)①∵拋物線的對稱軸為直線,
解得,
拋物線與軸交于點(diǎn),
,
拋物線的解析式為;
②由相關(guān)點(diǎn)定義得,點(diǎn)關(guān)于直線對稱.
又直線與軸交于點(diǎn),
直線的解析式為.
代入拋物線的解析式中,并整理,得
,
解得,,
兩點(diǎn)坐標(biāo)為和.
設(shè)點(diǎn)的橫坐標(biāo)為,則點(diǎn),
過作軸交直線于點(diǎn),
則點(diǎn)坐標(biāo)為,
,
即當(dāng)時,的面積最大,最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)的圖象相交于點(diǎn)A(﹣4,2),B(n,﹣4)
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出不等式y1<y2的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點(diǎn)(﹣3,0),(1,0),下列說法錯誤的是( 。
A.2a﹣b=0
B.4a﹣2b+c<0
C.(﹣4,y1),(2,y2)是拋物線上兩點(diǎn),則y1>y2
D.y<0時,﹣3<x<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某小區(qū)青年對“高鐵”、“掃碼支付”、“網(wǎng)購”和“共享單車”新四大發(fā)明的喜愛程度,隨機(jī)調(diào)查該小區(qū)一部分青年(每名青年只能選一個),并將調(diào)查結(jié)果制成如圖所示統(tǒng)計(jì)表與條形統(tǒng)計(jì)圖.
青年最喜愛的新四大發(fā)明人數(shù)統(tǒng)計(jì)表
節(jié)目 | 人數(shù)(名) | 百分比 |
共享單車 | 5 | |
掃碼支付 | 15 | |
網(wǎng)購 | ||
高鐵 | 10 |
青年最喜愛的新四大發(fā)明人數(shù)條形統(tǒng)計(jì)圖
(1)計(jì)算的值 ;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在被調(diào)查喜愛“共享單車”青年中,小明一周內(nèi)使用共享單車的次數(shù)分別為:1,3,5,12,,若整數(shù)是這組數(shù)據(jù)的中位數(shù),直接寫出該組數(shù)據(jù)的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若b是正數(shù),直線l:y=b與y軸交于點(diǎn)A;直線a:y=x﹣b與y軸交于點(diǎn)B;拋物線L:y=﹣x2+bx的頂點(diǎn)為C,且L與x軸右交點(diǎn)為D.
(1)若AB=8,求b的值,并求此時L的對稱軸與a的交點(diǎn)坐標(biāo);
(2)當(dāng)點(diǎn)C在l下方時,求點(diǎn)C與l距離的最大值;
(3)設(shè)x0≠0,點(diǎn)(x0,y1),(x0,y2),(x0,y3)分別在l,a和L上,且y3是y1,y2的平均數(shù),求點(diǎn)(x0,0)與點(diǎn)D間的距離;
(4)在L和a所圍成的封閉圖形的邊界上,把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“美點(diǎn)”,分別直接寫出b=2019和b=2019.5時“美點(diǎn)”的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為( )
A. 6π﹣B. 6π﹣9C. 12π﹣D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,OB=OC=3.
(1)求該拋物線的函數(shù)解析式;
(2)如圖1,連接BC,點(diǎn)D是直線BC上方拋物線上的點(diǎn),連接OD,CD,OD交BC于點(diǎn)F,當(dāng)S△COF:S△CDF=3:2時,求點(diǎn)D的坐標(biāo).
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,),在拋物線上是否存在點(diǎn)P,使∠OBP=2∠OBE?若存在,請直接寫出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O交斜邊AC于點(diǎn)D,過圓心O作OE∥AC,交BC于點(diǎn)E,連接DE.
(1)判斷DE與⊙O的位置關(guān)系并說明理由;
(2)求證:2DE2=CDOE;
(3)若tanC=,DE=,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com