【題目】如圖,已知直線y=x與雙曲線y=(k>0)交于A、B兩點(diǎn),A點(diǎn)的橫坐標(biāo)為3,則下列結(jié)論:①k=6;②A點(diǎn)與B點(diǎn)關(guān)于原點(diǎn)O中心對(duì)稱;③關(guān)于x的不等式<0的解集為x<﹣3或0<x<3;④若雙曲線y=(k>0)上有一點(diǎn)C的縱坐標(biāo)為6,則△AOC的面積為8,其中正確結(jié)論的個(gè)數(shù)( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
【答案】A
【解析】
①由A點(diǎn)橫坐標(biāo)為3,代入正比例函數(shù),可求得點(diǎn)A的坐標(biāo),繼而求得k值;
②根據(jù)直線和雙曲線的性質(zhì)即可判斷;
③結(jié)合圖象,即可求得關(guān)于x的不等式<0的解集;
④過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,過(guò)點(diǎn)A作AE⊥軸于點(diǎn)E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由點(diǎn)C的縱坐標(biāo)為6,可求得點(diǎn)C的坐標(biāo),繼而求得答案.
①∵直線y=x與雙曲線y=(k>0)交于A、B兩點(diǎn),A點(diǎn)的橫坐標(biāo)為3,
∴點(diǎn)A的縱坐標(biāo)為:y=×3=2,
∴點(diǎn)A(3,2),
∴k=3×2=6,
故①正確;
②∵直線y=x與雙曲線y=(k>0)是中心對(duì)稱圖形,
∴A點(diǎn)與B點(diǎn)關(guān)于原點(diǎn)O中心對(duì)稱
,故②正確;
③∵直線y=x與雙曲線y=(k>0)交于A、B兩點(diǎn),
∴B(﹣3,﹣2),
∴關(guān)于x的不等式<0的解集為:x<﹣3或0<x<3,
故③正確;
④過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,
∵點(diǎn)C的縱坐標(biāo)為6,
∴把y=6代入y=得:x=1,
∴點(diǎn)C(1,6),
∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+6)×(3﹣1)=8,故④正確;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,AB=6,連接AC,BD,P是正方形邊上或?qū)蔷上一點(diǎn),若PD=2AP,則AP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=-(x-1)2+5,當(dāng)m≤x≤n且mn<0時(shí),y的最小值為2m,最大值2n,則m+n的值等于( )
A.0B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=m,BC=n,將此矩形繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)θ(0°<θ<90°)得到矩形A1BC1D1,點(diǎn)A1在邊CD上.
(1)若m=2,n=1,求在旋轉(zhuǎn)過(guò)程中,點(diǎn)D到點(diǎn)D1所經(jīng)過(guò)路徑的長(zhǎng)度;
(2)將矩形A1BC1D1繼續(xù)繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)得到矩形A2BC2D2,點(diǎn)D2在BC的延長(zhǎng)線上,設(shè)邊A2B與CD交于點(diǎn)E,若=﹣1,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月24日《復(fù)仇者聯(lián)盟4》在中國(guó)大陸上映.我市江北UME影城為加大宣傳,決定在4月23日預(yù)售普通3D票400張和IMAX票100張,且預(yù)售中的IMAX的票價(jià)是普通3D票價(jià)的2倍.
(1)若影城的預(yù)售總額不低于21000元,則普通3D票的預(yù)售價(jià)格最少為多少元?
(2)影城計(jì)劃在上映當(dāng)天推出普通3D票3200張,IMAX票800張.由于預(yù)售的火爆,影城決定將普通3D票的價(jià)格在(1)中最低價(jià)格的基礎(chǔ)上增加%,而IMAX票價(jià)在(1)中IMAX票價(jià)上增加了a元,結(jié)果普通3D票的銷售量比計(jì)劃少2a%.IMAX票的銷售量與計(jì)劃保持一致,最終實(shí)際銷售額與計(jì)劃銷售額相等,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線交x軸正半軸于點(diǎn)A,交y軸負(fù)半軸于點(diǎn)B,點(diǎn)C在線段OA上,將沿直線BC翻折,點(diǎn)A與y軸上的點(diǎn)D(0,4)恰好重合.
(1)求直線AB的表達(dá)式.
(2)已知點(diǎn)E(0,3),點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B重合),連接PD,PE,當(dāng)PDE的周長(zhǎng)取得最小值時(shí),求點(diǎn)P的坐標(biāo)。
(3)在坐標(biāo)軸上是否存在一點(diǎn)H,使得HAB和ABC的面積相等?若存在,求出滿足條件的點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了運(yùn)送防疫物資,甲、乙兩貨運(yùn)公司各派出一輛卡車,分別從距目的地240千米和270千米的兩地同時(shí)出發(fā),馳援疫區(qū).已知乙公司卡車的平均速度是甲公司卡車的平均速度的1.5倍,甲公司的卡車比乙公司的卡車晚1小時(shí)到達(dá)目的地,分別求甲、乙兩貨運(yùn)公司卡車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形中,BC=3,動(dòng)點(diǎn)從出發(fā),以每秒1個(gè)單位的速度,沿射線方向移動(dòng),作關(guān)于直線的對(duì)稱,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為
(1)若
①如圖2,當(dāng)點(diǎn)B’落在AC上時(shí),顯然△PCB’是直角三角形,求此時(shí)t的值
②是否存在異于圖2的時(shí)刻,使得△PCB’是直角三角形?若存在,請(qǐng)直接寫出所有符合題意的t的值?若不存在,請(qǐng)說(shuō)明理由
(2)當(dāng)P點(diǎn)不與C點(diǎn)重合時(shí),若直線PB’與直線CD相交于點(diǎn)M,且當(dāng)t<3時(shí)存在某一時(shí)刻有結(jié)論∠PAM=45°成立,試探究:對(duì)于t>3的任意時(shí)刻,結(jié)論∠PAM=45°是否總是成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:如圖1和圖2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點(diǎn)E、F分別在BC、CD上,∠EAF=45°.
(1)①如圖1,若∠B、∠ADC都是直角,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,使AB與AD重合,直接寫出線段BE、DF和EF之間的數(shù)量關(guān)系 ;
②如圖2,若∠B、∠D都不是直角,但滿足∠B+∠D=180°,線段BE、DF和EF之間的結(jié)論是否仍然成立,若成立,請(qǐng)寫出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.
(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2.點(diǎn)D、E均在邊BC邊上,且∠DAE=45°,若BD=1,求DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com