【題目】如圖,點(diǎn)E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿BE→ED→DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.點(diǎn)P、Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts),△BPQ的面積為ycm2),已知yt之間的函數(shù)圖象如圖2所示,給出下列結(jié)論:①當(dāng)0t≤10時(shí),△BPQ是等腰三角形;②SABE24cm2;③當(dāng)14t22時(shí),y1006t;④在運(yùn)動(dòng)過程中,使得△ABP是等腰三角形的P點(diǎn)一共3個(gè);⑤當(dāng)△BPQ與△BEA相似時(shí),t14.5,其中正確結(jié)論的序號(hào)是______

【答案】①②⑤

【解析】

由圖象可知,點(diǎn)Q到達(dá)C時(shí),點(diǎn)PEBEBC10,ED4,當(dāng)0t10時(shí),BP始終等于BQ即可得出結(jié)論;

由△BPQ的面積等于40求出DC的長,再由SABE×ABAE即可得出結(jié)論;

當(dāng)14t22時(shí),由yBCPC代入即可得出結(jié)論;

ABP為等腰三角形需要分類討論:當(dāng)ABAP時(shí),ED上存在一個(gè)符合題意的P點(diǎn),當(dāng)BABP時(shí),BE上存在一個(gè)符合題意的P點(diǎn),當(dāng)PAPB時(shí),點(diǎn)PAB垂直平分線上,所以BECD上各存在一個(gè)符合題意的P點(diǎn),即可得出結(jié)論;

由當(dāng)時(shí),△BPQ與△BEA相似,分別將數(shù)值代入即可得出結(jié)論.

解:由圖象可知,點(diǎn)Q到達(dá)C時(shí),點(diǎn)PEBEBC10,ED4,

它們運(yùn)動(dòng)的速度都是1cm/s.點(diǎn)PQ同時(shí)開始運(yùn)動(dòng),

當(dāng)0t≤10時(shí),BP始終等于BQ

∴△BPQ是等腰三角形;

正確;

②∵ED4,BC10

∴AE1046

t10時(shí),△BPQ的面積等于 BCDC×10×DC40

∴ABDC8

∴SABE×ABAE×8×624;

正確;

當(dāng)14t22時(shí),yBCPC×10×22t)=1105t

錯(cuò)誤;

④△ABP為等腰三角形需要分類討論:

當(dāng)ABAP時(shí),ED上存在一個(gè)符合題意的P點(diǎn),

當(dāng)BABP時(shí),BE上存在一個(gè)符合題意的P點(diǎn),

當(dāng)PAPB時(shí),點(diǎn)PAB垂直平分線上,所以BECD上各存在一個(gè)符合題意的P點(diǎn),

共有4個(gè)點(diǎn)滿足題意;

錯(cuò)誤;

⑤∵△BEA為直角三角形,

只有點(diǎn)PDC邊上時(shí),有△BPQ△BEA相似,

由已知,PQ22t,

當(dāng)時(shí),△BPQ△BEA相似,

分別將數(shù)值代入

解得:t(不合題意舍去)或t14.5;

正確;

綜上所述,正確的結(jié)論的序號(hào)是①②⑤

故答案為:①②⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的函數(shù)表達(dá)式是,下列結(jié)論不正確的是(

A.,函數(shù)的最大值是5

B.,當(dāng)時(shí),yx的增大而增大

C.無論a為何值時(shí),函數(shù)圖象一定經(jīng)過點(diǎn)

D.無論a為何值時(shí),函數(shù)圖象與x軸都有兩個(gè)交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的圖形P和直線AB,給出如下定義:M為圖形P上任意一點(diǎn),N為直線AB上任意一點(diǎn),如果M,N兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形P和直線AB之間的確定距離,記作dP,直線AB).

已知A(2,0),B(02)

1)求d(點(diǎn)O,直線AB);

2)⊙T的圓心為半徑為1,若d(T,直線AB)≤1,直接寫出t的取值范圍;

3)記函數(shù)的圖象為圖形Q.若d(Q,直線AB)=1,直接寫出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于圖形,若存在一個(gè)正方形,這個(gè)正方形的某條邊與軸垂直,且圖形上的所有的點(diǎn)都在該正方形的內(nèi)部或者邊上,則稱該正方形為圖形的一個(gè)正覆蓋.很顯然,如果圖形存在一個(gè)正覆蓋,則它的正覆蓋有無數(shù)個(gè),我們將圖形的所有正覆蓋中邊長最小的一個(gè),稱為它的緊覆蓋,如圖所示,圖形為三條線段和一個(gè)圓弧組成的封閉圖形,圖中的三個(gè)正方形均為圖形的正覆蓋,其中正方形就是圖形的緊覆蓋.
1)對于半徑為2,它的緊覆蓋的邊長為____.

2)如圖1,點(diǎn)為直線上一動(dòng)點(diǎn),若線段的緊覆蓋的邊長為,求點(diǎn) 的坐標(biāo).
3)如圖2,直線軸,軸分別交于
①以為圓心,為半徑的與線段有公共點(diǎn),且由與線段組成的圖形的緊覆益的邊長小于,直接寫出的取值范圍;
②若在拋物線 上存在點(diǎn),使得的緊覆益的邊長為,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會(huì),鼓勵(lì)更多的學(xué)生參與到志愿服務(wù)中來,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊(duì)選拔活動(dòng),經(jīng)過初選,兩所學(xué)校各有400名學(xué)生進(jìn)入綜合素質(zhì)展示環(huán)節(jié).為了了解兩所學(xué)校這些學(xué)生的整體情況,從兩校進(jìn)人綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析.下面給出了部分信息.

a.甲學(xué)校學(xué)生成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,);

b.甲學(xué)校學(xué)生成績在這一組的是:

80 80 81 81.5 82 83 83 84

85 86 86.5 87 88 88.5 89 89

c.乙學(xué)校學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

83.3

84

78

46%

根據(jù)以上信息,回答下列問題:

1)甲學(xué)校學(xué)生A,乙學(xué)校學(xué)生B的綜合素質(zhì)展示成績同為83分,這兩人在本校學(xué)生中的綜合素質(zhì)展示排名更靠前的是______(填“A”“B”);

2)根據(jù)上述信息,推斷_____學(xué)校綜合素質(zhì)展示的水平更高,理由為_____(至少從兩個(gè)不同的角度說明推斷的合理性);

3)若每所學(xué)校綜合素質(zhì)展示的前120名學(xué)生將被選入志愿服務(wù)團(tuán)隊(duì),預(yù)估甲學(xué)校分?jǐn)?shù)至少達(dá)到____分的學(xué)生才可以入選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嵊州市三江購物中心為了迎接店慶,準(zhǔn)備了某種氣球,這些氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時(shí),氣球內(nèi)氣體的氣壓PkPa)是氣體體積Vm3)的反比例函數(shù),其圖象如下圖所示.

1)試寫出這個(gè)函數(shù)的表達(dá)式;

2)當(dāng)氣球的體積為2m3時(shí),氣球內(nèi)氣體的氣壓是多少?

3)當(dāng)氣球內(nèi)的氣壓大于120kPa時(shí),氣球?qū)⒈ǎ疄榱税踩鹨,對氣球的體積有什么要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲,乙兩種機(jī)器人都被用來搬運(yùn)某體育館室內(nèi)裝潢材料甲型機(jī)器人比乙型機(jī)器人每小時(shí)少搬運(yùn)30千克,甲型機(jī)器人搬運(yùn)600千克所用的時(shí)間與乙型機(jī)器人搬運(yùn)800千克所用的時(shí)間相同,兩種機(jī)器人每小時(shí)分別搬運(yùn)多少千克?設(shè)甲型機(jī)器人每小時(shí)搬運(yùn)x千克,根據(jù)題意,可列方程為(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+x+3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C:連接BC,點(diǎn)P為線段BC上方拋物線上的一動(dòng)點(diǎn),連接OPBC于點(diǎn)Q

1)如圖1,當(dāng)值最大時(shí),點(diǎn)E為線段AB上一點(diǎn),在線段BC上有兩動(dòng)點(diǎn)M,NMN上方),且MN=1,求PM+MN+NE-BE的最小值;

2)如圖2,連接AC,將AOC沿射線CB方向平移,點(diǎn)A,CO平移后的對應(yīng)點(diǎn)分別記作A1,C1,O1,當(dāng)C1B=O1B時(shí),連接A1B、O1B,將A1O1B繞點(diǎn)O1沿順時(shí)針方向旋轉(zhuǎn)90°后得A2O1B1在直線x=上是否存在點(diǎn)K,使得A2B1K為等腰三角形?若存在,直接寫出點(diǎn)K的坐標(biāo);不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)活動(dòng)小組在研究三角形拓展圖形的性質(zhì)時(shí),經(jīng)歷了如下過程:

操作發(fā)現(xiàn)

在等腰ABC中,ABAC,分別以ABAC為腰,向ABC的外側(cè)作等腰直角三角形,如圖①所示,連接DE,其中FDE的中點(diǎn),連接AF,則下列結(jié)論正確的是   (填序號(hào)即可)

AFBC:②AFBC;③整個(gè)圖形是軸對稱圖形;④DEBC、

數(shù)學(xué)思考

在任意ABC中,分別以ABAC為腰,向ABC的外側(cè)作等腰直角三角形,如圖②所示,連接DE,其中FDE的中點(diǎn),連接AF,則AFBC有怎樣的數(shù)量和位置關(guān)系?請給出證明過程

類比探索

在任意ABC中,仍分別以ABAC為腰,向ABC的內(nèi)側(cè)作等腰直角三角形,如圖③所示,連接DE,其中FDE的中點(diǎn),連接AF,試判斷AFBC的數(shù)量和位置關(guān)系是否發(fā)生改變?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案