分析 (1)過(guò)C作CE⊥AB,根據(jù)題意知∠ACE=30°,∠ECB=53°,AC=150,解直角三角形即可求得AB長(zhǎng);
(2)作DF⊥AC于F,通過(guò)解直角三角形求解;即可得出AD的長(zhǎng).
解答 解:(1)作CE⊥AB于E,
由題意可知,∠ACE=30°,∠ECB=53°,
在RT△ACE中,AC=150,
∴CE=$\frac{\sqrt{3}}{2}$AC=75$\sqrt{3}$,AE=$\frac{1}{2}$AC=75,
在RT△BCE中,EC=75$\sqrt{3}$,
∴BE=tan53°•CE=$\frac{4}{3}$×75$\sqrt{3}$=100$\sqrt{3}$,
∴AB=AE+BE=75+100$\sqrt{3}$(千米),
故新修高速公路AB的長(zhǎng)度為(75+100$\sqrt{3}$)千米;
(2)作DF⊥AC于F,
∵∠ACE=30°,∠DCE=15°
∴∠ACD=45°,∠A=60°,
∴∠CDF=45°,
∴ACD=∠CDF,
∴CF=DF,
∴AF=$\frac{1}{2}$AD,CF=DF=$\frac{\sqrt{3}}{2}$AD,
∴$\frac{1}{2}$AD+$\frac{\sqrt{3}}{2}$AD=150,
∴AD=$150\sqrt{3}-150$.
所以,D到A市距離為(150$\sqrt{3}$-150)千米.
點(diǎn)評(píng) 本題考查的是解直角三角形的應(yīng)用-方向角問(wèn)題,根據(jù)題意作出輔助線,利用直角三角形的性質(zhì)求解是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ab>0 | B. | a>-b | C. | a2-b2>0 | D. | |b-1|=1-b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com