【題目】從有關(guān)方面獲悉,在我市農(nóng)村已經(jīng)實(shí)行了農(nóng)民新型合作醫(yī)療保險(xiǎn)制度.享受醫(yī)保的農(nóng)民可在規(guī)定的醫(yī)院就醫(yī)并按規(guī)定標(biāo)準(zhǔn)報(bào)銷部分醫(yī)療費(fèi)用.下表是醫(yī)療費(fèi)用報(bào)銷的標(biāo)準(zhǔn):
(說明:住院醫(yī)療費(fèi)用為整數(shù),住院醫(yī)療費(fèi)用的報(bào)銷分段計(jì)算.如:某人住院醫(yī)療費(fèi)用共30000元,則5000元按30%報(bào)銷、15000元按40%報(bào)銷、余下的10000元按50%報(bào)銷;題中涉及到的醫(yī)療費(fèi)均指允許報(bào)銷的醫(yī)療費(fèi))
(1)甲農(nóng)民一年內(nèi)實(shí)際門診醫(yī)療費(fèi)為2000元,則標(biāo)準(zhǔn)報(bào)銷的金額為 元;
乙農(nóng)民一年住院醫(yī)療費(fèi)為15000元,則按標(biāo)準(zhǔn)報(bào)銷的金額為 元;
(2)設(shè)某農(nóng)民一年中住院的實(shí)際醫(yī)療費(fèi)用為x元(5001≤x≤20000),按標(biāo)準(zhǔn)報(bào)銷的金額為多少元?(用含x的代數(shù)式表示)
(3)若某農(nóng)民一年內(nèi)本人自負(fù)住院醫(yī)療費(fèi)17000元(自負(fù)醫(yī)療費(fèi)=實(shí)際醫(yī)療費(fèi)﹣按標(biāo)準(zhǔn)報(bào)銷的金額),則該農(nóng)民當(dāng)年實(shí)際醫(yī)療費(fèi)用共多少元?
【答案】(1)600,5500;(2)0.4x﹣500;(3)29000元.
【解析】
試題分析:(1)報(bào)銷金額為:醫(yī)療費(fèi)×30%;5000元×30%+超過5000的金額×40%;
(2)報(bào)銷金額為:5000元×30%+超過5000的金額×40%;
(3)易得實(shí)際醫(yī)療費(fèi)超過20000,等量關(guān)系為:5000×(1﹣30%)+15000×(1﹣40%)+超過20000的醫(yī)療費(fèi)×(1﹣50%)=17000,把相關(guān)數(shù)值代入計(jì)算即可.
解:(1)2000×30%=600元,5000×30%+(15000﹣5000)×40%=5500,故答案為600,5500;
(2)5000×30%+(x﹣5000)×40%=1500+0.4x﹣2000=0.4x﹣500;
(3)設(shè)實(shí)際醫(yī)療費(fèi)為x元.
5000×(1﹣30%)+15000×(1﹣40%)+(x﹣20000)×(1﹣50%)=17000,
3500+9000+0.5x﹣10000=17000,
解得x=29000.
答:實(shí)際醫(yī)療費(fèi)為29000元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一工地計(jì)劃租用甲、乙兩輛車清理淤泥,從運(yùn)輸量來估算:若租兩車合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙車完成任務(wù)則比單獨(dú)租用甲車完成任務(wù)多用15天.
(1)甲、乙兩車單獨(dú)完成任務(wù)分別需要多少天?
(2)已知兩車合運(yùn)共需租金65000元,甲車每天的租金比乙車每天的租金多1500元,試問:租甲乙兩車、單獨(dú)租甲車、單獨(dú)租乙車這三種租車方案中,哪一種租金最少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】包裝廠有工人42人,每個(gè)工人平均每小時(shí)可以生產(chǎn)圓形鐵片120片,或長方形鐵片80片,兩張圓形鐵片與一張長方形鐵片可配套成一個(gè)密封圓桶,問每天如何安排工人生產(chǎn)圓形和長方形鐵片能合理地將鐵片配套?設(shè)安排x人生產(chǎn)圓形鐵片,可以列方程:( 。
A.120(42﹣x)=2×80xB.80(42﹣x)=120x
C.2×80(42﹣x)=120xD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】提出問題:
(1)如圖1,在正方形ABCD中,點(diǎn)E,H分別在BC,AB上,若AE⊥DH于點(diǎn)O,求證:AE=DH;
類比探究:
(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F分別在AB,BC,CD,DA上,若EF⊥HG于點(diǎn)O,探究線段EF與HG的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形 ABCD ,有以下四個(gè)條件:① AB ∥ CD ;② BC ∥ AD ;③ AB CD ;④ABC ADC .從這四個(gè)條件中任選兩個(gè),能使四邊形 ABCD 成為平行四邊形的選法有( )
A.3 種B.4 種C.5 種D.6 種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,在平行四邊形 ABCD 中,對角線 AC 、 BD 交于點(diǎn) O ,并且 DAC 60 ,ADB 15 ,點(diǎn) E 是 AD 上一動(dòng)點(diǎn),延長 EO 交 BC 于點(diǎn) F 。當(dāng)點(diǎn) E 從 D 點(diǎn)向 A 點(diǎn)移動(dòng) 過程中(點(diǎn) E 與點(diǎn) D 、點(diǎn) A 不重合),則四邊形 AFCE 的變化是( )
A.平行四邊形→矩形→平行四邊形→菱形→平行四邊形
B.平行四邊形→矩形→平行四邊形→正方形→平行四邊形
C.平行四邊形→菱形→平行四邊形→矩形→平行四邊形
D.平行四邊形→矩形→菱形→正方形→平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形三個(gè)內(nèi)角的度數(shù)之和是180°,如圖是兩個(gè)三角板不同位置的擺放,其中∠ACB=∠CDE=90°,∠BAC=60°,∠DEC=45°.
(1)當(dāng)AB∥CD時(shí),如圖①,求∠DCB的度數(shù);
(2)當(dāng)CD與CB重合時(shí),如圖②,判斷DE與AC的位置關(guān)系并說明理由;
(3)如圖③,當(dāng)∠DCB= 時(shí),AB∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=mx(m為常數(shù))與雙曲線y=(k為常數(shù))相交于A、B兩點(diǎn).
(1)若點(diǎn)A的橫坐標(biāo)為3,點(diǎn)B的縱坐標(biāo)為﹣4
①直接寫出:k=____,m=____;
②點(diǎn)C在第一象限內(nèi)是雙曲線y=的點(diǎn),當(dāng)S△OAC=9時(shí),求點(diǎn)C的坐標(biāo);
(2)將直線y=mx向右平移得到直線y=mx+b,交雙曲線y=于點(diǎn)E(4,y1)和F(﹣2,y2),直接寫出不等式mx2+bx<k的解集:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了綠化環(huán)境,育英中學(xué)八年級三班同學(xué)都積極參加植樹活動(dòng),今年植樹節(jié)時(shí),該班同學(xué)植樹情況的部分?jǐn)?shù)據(jù)如圖所示,請根據(jù)統(tǒng)計(jì)圖信息,回答下列問題:
(1)八年級三班共有多少名同學(xué)?
(2)條形統(tǒng)計(jì)圖中,m= ,n= .
(3)扇形統(tǒng)計(jì)圖中,試計(jì)算植樹2棵的人數(shù)所對應(yīng)的扇形圓心角的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com