【題目】如圖所示,圖1、圖2分別是的網(wǎng)格,網(wǎng)格中的每個小正方形的邊長均為1.請按下列要求分別畫出相應的圖形,且所畫圖形的每個頂點均在所給小正方形的頂點上.
(1)在圖1中畫出一個周長為的菱形 (非正方形);
(2)在圖2中畫出一個面積為9的平行四邊形,且滿足,請直接寫出平行四邊形的周長.
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.
(1)如圖①,若∠P=35°,求∠ABP的度數(shù);
(2)如圖②,若直線CD是⊙O的切線,求證:D為AP的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC,BD相交于點O,且AB∥CD,添加下列條件后仍不能判斷四邊形ABCD是平行四邊形的是( 。
A.AB=CDB.AD∥BCC.OA=OCD.AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù) y=ax2+bx+c 的圖象交 x 軸于A、B 兩點,交 y 軸于 C 點,P 為 y 軸上的一個動點,已知 A(﹣2,0)、C(0,﹣2 ),且拋物線的對稱軸是直線 x=1.
(1)求此二次函數(shù)的解析式;
(2)連接 PB,則 PC+PB 的最小值是 ;
(3)連接 PA、PB,P 點運動到何處時,使得∠APB=60°,請求出 P 點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司投資銷售一種進價為每件15元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設該公司每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】益民商店經銷某種商品,進價為每件80元,商店銷售該商品每件售價高干8元且不超過120元若售價定為每件120元時,每天可銷售200件,市場調查反映:該商品售價在120元的基礎上,每降價1元,每天可多銷售10件,設該商品的售價為元,每天銷售該商品的數(shù)量為件.
(1)求與之間的函數(shù)關系式;
(2)商店在銷售該商品時,除成本外每天還需支付其余各種費用1000元,益民商店在某一天銷售該商品時共獲利8000元,求這一天該商品的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠設計了一款成本為20元/件的工藝品投放市場進行試銷,經過調查,得到如下數(shù)據(jù):
銷售單價x(元∕件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究發(fā)現(xiàn),每天銷售量y與單價x滿足一次函數(shù)關系,求出y與x的關系式;
(2)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤8000元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P1(x1,y1),點P2(x2,y2),…,點Pn(xn,yn)在函數(shù)y=(x>0)的圖象上,△P1OA,△P2A1A2,△P3A2A3,…,△PnAn﹣1An都是等腰直角三角形,斜邊OA1,A1A2,A2A3,…,An﹣1An都在x軸上(n是大于或等于2的正整數(shù)).若△P1OA1的內接正方形B1C1D1E1的周長記為l1,△P2A1A2的內接正方形的周長記為l2,…,△PnAn﹣1An的內接正方形BnCnDnEn的周長記為ln,則l1+l2+l3+…+ln= (用含n的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com