【題目】疫情防控,我們一直在堅守.某居委會組織兩個檢查組,分別對“居民體溫”和“居民安全出行”的情況進行抽查.若這兩個檢查組在轄區(qū)內(nèi)的某三個校區(qū)中各自隨機抽取一個小區(qū)進行檢查,則他們恰好抽到同一個小區(qū)的概率是( )
A.B.C.D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠C=90°,點D在AC上,且CD>DA,DA=2.點P、Q同時從D點出發(fā),以相同的速度分別沿射線DC、射線DA運動.過點Q作AC的垂線段QR,使QR=PQ,聯(lián)接PR.當點Q到達A時,點P、Q同時停止運動.設(shè)PQ=x.△PQR和△ABC重合部分的面積為S.S關(guān)于x的函數(shù)圖像如圖2所示(其中0<x≤,<x≤m時,函數(shù)的解析式不同)
(1)填空:n的值為___________;
(2)求S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC頂點的坐標分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).
(1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且ABC位于點C的異側(cè),并表示出點A1的坐標.
(2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C.
(3)在(2)的條件下求出點B經(jīng)過的路徑長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀以下材料:對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學家納皮爾(J.Napier,1550年-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)概念建立之前,直到18世紀瑞士數(shù)學家歐拉(Euler,1707年-1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.對數(shù)的定義:一般地,若,則叫做以為底的對數(shù),記作.比如指數(shù)式可以轉(zhuǎn)化為,對數(shù)式可以轉(zhuǎn)化為.我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):.理由如下:設(shè),,所以,,所以,由對數(shù)的定義得,又因為,所以.解決以下問題:
(1)將指數(shù)轉(zhuǎn)化為對數(shù)式: .
(2)仿照上面的材料,試證明:
(3)拓展運用:計算 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強學生課外閱讀,開闊視野,某校開展了“書香校園,誦讀經(jīng)典”活動,學校隨機抽查了部分學生,對他們每天的課外閱讀時間進行調(diào)查,并將調(diào)查統(tǒng)計的結(jié)果分為四類:每天誦讀時間分鐘的學生記為類,20分鐘分鐘記為類,40分鐘分鐘記為類,分鐘記為類,收集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)這次共抽取了__________名學生進行調(diào)查統(tǒng)計,扇形統(tǒng)計圖中類所對應的扇形圓心角大小為___________;
(2)將條形統(tǒng)計圖補充完整;
(3)如果該校共有2000名學生,請你估計該校類學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中國班列”開通后,我國與歐洲各國經(jīng)貿(mào)往來日益頻繁.某歐洲列國客商準備在湖北采購一批特色商品,經(jīng)調(diào)查,用16000元采購A型商品的件數(shù)是7500元采購B型商品的件數(shù)的2倍.一件A型商品的進價比一件B型商品的進價多10元.
(1)求一件A,B商品的進價分別為多少元
(2)若該歐洲客商購進A,B型商品共250件進行試銷,其中A 型商品的件數(shù)不大于B型的件數(shù)且不小于80件,已知A型商品的售價為240元/件,B型商品的售價為220元/件,且全部售出,求該客商售完所有商品后獲得的最大收益.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小葉與小高欲測量公園內(nèi)某棵樹DE的高度.他們在這棵樹正前方的一座樓亭前的臺階上的點A處測得這棵樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得這棵樹頂端D的仰角為60°.已知點A的高度AB為3 m,臺階AC的坡度為1∶,且B,C,E三點在同一條直線上,那么這棵樹DE的高度為( )
A. 6 m B. 7 m C. 8 m D. 9 m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,拋物線過點.
(1)求出拋物線解析式的一般式;
(2)拋物線上的動點在一次函數(shù)的圖象下方,求面積的最大值,并求出此時點的坐標;
(3)若點為軸上任意一點,在(2)的結(jié)論下,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com