【題目】中,,,過點(diǎn)作直線,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到(點(diǎn)的對(duì)應(yīng)點(diǎn)分別為),射線分別交直線于點(diǎn).

1)如圖,當(dāng)重合時(shí),求的度數(shù);

2)如圖,設(shè)的交點(diǎn)為,當(dāng)的中點(diǎn)時(shí),求線段的長(zhǎng);

3)在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)分別在的延長(zhǎng)線上時(shí),試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請(qǐng)說明理由.

【答案】1;(2;(3,見解析.

【解析】

1)由旋轉(zhuǎn)可得:AC=A'C=2,進(jìn)而得到BC=,依據(jù)∠A'BC=90°,可得cosA'CB=,即可得到∠A'CB=30°,∠ACA'=60°;
2)根據(jù)MA'B'的中點(diǎn),即可得出∠A=A'CM,進(jìn)而得到PB=,BC=,依據(jù)tanQ=tanA=,即可得到BQ=BC×=2,進(jìn)而得出PQ=PB+BQ=
3)依據(jù)S四邊形PA'B′Q=SPCQ-SA'CB'=SPCQ-,即可得到S四邊形PA'B′Q最小,即SPCQ最小,而SPCQ=PQ×BC=PQ,利用幾何法或代數(shù)法即可得到SPCQ的最小值=3S四邊形PA'B′Q=3-

解:⑴由旋轉(zhuǎn)可得:,∵,

,∴,∴,∴,∴

⑵∵的中點(diǎn),∴,由旋轉(zhuǎn)可得,,∴,

,∴,∵

,

,∴;

⑶∵,∴最小,即最小,

,取的中點(diǎn),∵,∴,即,

當(dāng)最小時(shí),最小,∴,即重合時(shí),最小,

,∴的最小值=3;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點(diǎn)C和點(diǎn)D為圓心,大于為半徑作弧,兩弧交于點(diǎn)M,N;②作直線MN,且恰好經(jīng)過點(diǎn)A,與CD交于點(diǎn)E,連接BE,則下列說法錯(cuò)誤的是( )

A.B.C.AB=4,則D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD與線段AE,且AEAB重合.現(xiàn)將線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在旋轉(zhuǎn)過程中,若不考慮點(diǎn)E與點(diǎn)B重合的情形,點(diǎn)E還有三次落在菱形ABCD的邊上,設(shè)∠B=α,則下列結(jié)論正確的是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.

1)求點(diǎn),的坐標(biāo);

2)求直線的解析式;

3)在直線下方的拋物線上是否存在一點(diǎn),使的面積最大?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校開展“書香校園”活動(dòng)以來,受到同學(xué)們的廣泛關(guān)注,學(xué)位為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如下不完整的統(tǒng)計(jì)圖表.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

1=___________,=_____________

2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是_________,眾數(shù)是__________

3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“3次”所對(duì)應(yīng)扇形的圓心角的度數(shù);

4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書“4次及以上”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校開展“書香校園”活動(dòng)以來,受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計(jì)表.

學(xué)生借閱圖書的次數(shù):

借閱圖書的次數(shù)

0

1

2

3

4次以上

人數(shù)

7

13

10

3

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

1____________,____________

2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是___________次;

3)扇形統(tǒng)計(jì)圖中,“3次”所對(duì)應(yīng)扇形的圓心角的度數(shù)是____________;

4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書“4次及以上”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A.了解全國(guó)中學(xué)生最喜愛哪位歌手,適合全面調(diào)查.

B.甲乙兩種麥種,連續(xù)3年的平均畝產(chǎn)量相同,它們的方差為:S25,S20.5,則甲麥種產(chǎn)量比較穩(wěn).

C.某次朗讀比賽中預(yù)設(shè)半數(shù)晉級(jí),某同學(xué)想知道自己是否晉級(jí),除知道自己的成績(jī)外,還需要知道平均成績(jī).

D.一組數(shù)據(jù):32,55,46的眾數(shù)是5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2a,EBC邊的中點(diǎn), 的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價(jià)為8/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.

小麗:如果以10/千克的價(jià)格銷售,那么每天可售出300千克.

小強(qiáng):如果每千克的利潤(rùn)為3元,那么每天可售出250千克.

小紅:如果以13/千克的價(jià)格銷售,那么每天可獲取利潤(rùn)750元.

【利潤(rùn)=(銷售價(jià)-進(jìn)價(jià))銷售量】

1)請(qǐng)根據(jù)他們的對(duì)話填寫下表:

銷售單價(jià)x(元/kg

10

11

13

銷售量ykg




2)請(qǐng)你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷售這種水果每天獲取的利潤(rùn)為W元,求Wx的函數(shù)關(guān)系式.當(dāng)銷售單價(jià)為何值時(shí),每天可獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案