10.點(diǎn)A($3\sqrt{2}$,y1)和點(diǎn)B($2\sqrt{3}$,y2)均在一次函數(shù)y=-2x+1圖象上,則y1<y2.(填“>”、“<”或“=”)

分析 根據(jù)k<0,一次函數(shù)的函數(shù)值y隨x的增大而減小解答.

解答 解:∵k=-2<0,
∴函數(shù)值y隨x的增大而減小,
∵$2\sqrt{3}$<3$\sqrt{2}$,
∴y1<y2
故答案為:<

點(diǎn)評(píng) 本題考查了一次函數(shù)的增減性,在直線y=kx+b中,當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.一組數(shù):2,1,3,x,7,-9,…,滿足“從第三個(gè)數(shù)起,前兩個(gè)數(shù)依次為a、b,緊隨其后的數(shù)就是2a-b”,例如這組數(shù)中的第三個(gè)數(shù)“3”是由“2×2-1”得到的,那么這組數(shù)中x表示的數(shù)為-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知直角三角形的兩條直角邊分別為5cm,12cm,則此直角三角形的重心與外心之間的距離是$\frac{13}{6}$cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,在?ABCD中,E、F分別是AD、CD邊上的點(diǎn),連接BE、AF,它們相交于點(diǎn)G,延長(zhǎng)BE交CD的延長(zhǎng)線于點(diǎn)H,下列結(jié)論錯(cuò)誤的是( 。
A.$\frac{AE}{ED}=\frac{BE}{EH}$B.$\frac{EH}{EB}=\frac{DH}{CD}$C.$\frac{EG}{BG}=\frac{AE}{BC}$D.$\frac{AG}{FG}=\frac{BG}{GH}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.不等式組$\left\{\begin{array}{l}x>-1\\ 2x-1<0\end{array}\right.$的解集是( 。
A.x>-1B.x<$\frac{1}{2}$C.-1<x<$\frac{1}{2}$D.x>$\frac{1}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

15.將一張寬為5cm的長(zhǎng)方形紙片(足夠長(zhǎng))折疊成如圖所示圖形,重疊部分是一個(gè)三角形,則這個(gè)三角形面積的最小值是$\frac{25}{2}$cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖1,點(diǎn)P在正方形ABCD的對(duì)角線AC上,正方形的邊長(zhǎng)是a,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N.
(1)操作發(fā)現(xiàn):如圖2,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),當(dāng)PM⊥BC時(shí),四邊形PMCN是正方形.填空:①當(dāng)AP=2PC時(shí),四邊形PMCN的邊長(zhǎng)是$\frac{1}{3}$a;②當(dāng)AP=nPC時(shí)(n是正實(shí)數(shù)),四邊形PMCN的面積是$\frac{{a}^{2}}{(n+1)^{2}}$.
(2)猜想論證
如圖3,改變四邊形ABCD的形狀為矩形,AB=a,BC=b,點(diǎn)P在矩形ABCD的對(duì)角線AC上,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點(diǎn)M、N,固定點(diǎn)P,使△PEF繞點(diǎn)P旋轉(zhuǎn),則$\frac{PM}{PN}$=$\frac{a}$.
(3)拓展探究
如圖4,當(dāng)四邊形ABCD滿足條件:∠B+∠D=180°,∠EPF=∠BAD時(shí),點(diǎn)P在AC上,PE、PF分別交BC,CD于M、N點(diǎn),固定P點(diǎn),使△PEF繞點(diǎn)P旋轉(zhuǎn),請(qǐng)?zhí)骄?\frac{PM}{PN}$的值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,正方形ABCD中,以AD為底邊作等腰△ADE,將△ADE沿DE折疊,點(diǎn)A落到點(diǎn)F處,連接EF剛好經(jīng)過(guò)點(diǎn)C,再連接AF,分別交DE于G,交CD于H.在下列結(jié)論中:
①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△ADH,
其中正確的結(jié)論有(  )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.楚天汽車(chē)銷售公司5月份銷售某種型號(hào)汽車(chē),當(dāng)月該型號(hào)汽車(chē)的進(jìn)價(jià)為30萬(wàn)元/輛,若當(dāng)月銷售量超過(guò)5輛時(shí),每多售出1輛,所有售出的汽車(chē)進(jìn)價(jià)均降低0.1萬(wàn)元/輛.根據(jù)市場(chǎng)調(diào)查,月銷售量不會(huì)突破30臺(tái).已知該型號(hào)汽車(chē)的銷售價(jià)為32萬(wàn)元/輛,公司計(jì)劃當(dāng)月銷售利潤(rùn)25萬(wàn)元,那么月需售出多少輛汽車(chē)?(注:銷售利潤(rùn)=銷售價(jià)-進(jìn)價(jià))

查看答案和解析>>

同步練習(xí)冊(cè)答案