分析 (1)先過點(diǎn)E作ED⊥BC于D,由已知底部B的仰角為45°得BD=ED=FC=12,DC=EF=1.6,從而求出BC;
(2)由已知由E點(diǎn)觀測到旗桿頂部A的仰角為52°可求出AD,則AB=AD-BD.
解答 解:(1)根據(jù)題意得:EF⊥FC,ED∥FC,
∴四邊形CDEF是矩形,
∵∠BED=45°,
∴∠EBD=45°,
∴BD=ED=FC=12,
∴BC=BD+DC=BD+EF=12+1.6=13.6,
答:建筑物BC的高度為13m;
(2)∵∠AED=52°,
∴AD=ED•tan52°
≈12×1.28≈15.36m,
∴AB=AD-BD=15.36-12=3.4m,
答:旗桿AB的高度約為3.4m.
點(diǎn)評 此題考查的知識點(diǎn)是解直角三角形的應(yīng)用,解題的關(guān)鍵是把實(shí)際問題轉(zhuǎn)化為解直角三角形問題,先得到等腰直角三角形,再根據(jù)三角函數(shù)求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+a)(x+a) | B. | x2+a2+2ax | C. | 4(x+a) | D. | (x+a)a+(x+a)x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{2},0$) | B. | ($\frac{3}{2},\frac{3}{2}$) | C. | ($\sqrt{2},\sqrt{2}$) | D. | (2,2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com