【題目】在平面直角坐標(biāo)系中,x軸下方有一個(gè)菱形,如圖所示,畫(huà)圖并回答問(wèn)題.

1)將x軸下方的菱形先向右平移2個(gè)單位長(zhǎng)度,再向上平移6個(gè)單位長(zhǎng)度,畫(huà)出平移后的圖形;

2)將x軸下方的菱形繞著原點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn) 90°,畫(huà)出旋轉(zhuǎn)后的圖形;

3)在(1)和(2)中畫(huà)出的兩個(gè)圖形存在一種特殊關(guān)系,即一個(gè)圖形繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一個(gè)圖形,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).

【答案】1)作圖見(jiàn)解析;(2)作圖見(jiàn)解析;(3

【解析】

1)根據(jù)要求進(jìn)行平移,然后順次連接即可;

2)根據(jù)要求畫(huà)出繞著原點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°后的各點(diǎn),然后順次連接即可;

3)根據(jù)圖可得旋轉(zhuǎn)中心的坐標(biāo);

解:(1)如圖所示,菱形ABCD為所作;

2)如圖所示,菱形EFGH為所作;

3)由圖可知,旋轉(zhuǎn)中心的坐標(biāo)為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地質(zhì)量監(jiān)管部門(mén)對(duì)轄區(qū)內(nèi)的甲、乙兩家企業(yè)生產(chǎn)的某同類(lèi)產(chǎn)品進(jìn)行檢查,分別隨機(jī)抽取了50件產(chǎn)品并對(duì)某一項(xiàng)關(guān)鍵質(zhì)量指標(biāo)做檢測(cè),獲得了它們的質(zhì)量指標(biāo)值s,并對(duì)樣本數(shù)據(jù)(質(zhì)量指標(biāo)值s)進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.該質(zhì)量指標(biāo)值對(duì)應(yīng)的產(chǎn)品等級(jí)如下:

質(zhì)量指標(biāo)值

等級(jí)

次品

二等品

一等品

二等品

次品

說(shuō)明:等級(jí)是一等品,二等品為質(zhì)量合格(其中等級(jí)是一等品為質(zhì)量?jī)?yōu)秀).

等級(jí)是次品為質(zhì)量不合格.

b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計(jì)表如下(不完整).

c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下.

甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布表

分組

頻數(shù)

頻率

2

0.04

m

32

n

0.12

0

0.00

合計(jì)

50

1.00

乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖

d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差、方差如下:

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

甲企業(yè)

31.92

32.5

34

15

11.87

乙企業(yè)

31.92

31.5

31

20

15.34

根據(jù)以上信息,回答下列問(wèn)題:

1m的值為_(kāi)_______,n的值為_(kāi)_______.

2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計(jì)該產(chǎn)品質(zhì)量合格的概率為_(kāi)_______;若乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬(wàn)件,估計(jì)質(zhì)量?jī)?yōu)秀的有________萬(wàn)件;

3)根據(jù)圖表數(shù)據(jù),你認(rèn)為_(kāi)_______企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,理由為______________.(從某個(gè)角度說(shuō)明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索發(fā)現(xiàn)】

如圖,是一張直角三角形紙片,B=60°,小明想從中剪出一個(gè)以B為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過(guò)證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為

【拓展應(yīng)用】

如圖,在ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數(shù)式表示)

【靈活應(yīng)用】

如圖,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個(gè)面積最大的矩形(B為所剪出矩形的內(nèi)角),求該矩形的面積.

【實(shí)際應(yīng)用】

如圖,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年4月份,某校九年級(jí)學(xué)生參加了廣州市中考體育考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計(jì)圖(如圖),根據(jù)圖表中的信息解答下列問(wèn)題:

分組

分?jǐn)?shù)段(分)

頻數(shù)

2

5

15

10

1)求全班學(xué)生人數(shù)和的值.

2)直接寫(xiě)出該班學(xué)生的中考體育成績(jī)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段.

3)該班中考體育成績(jī)滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流.請(qǐng)用“列表法”或“畫(huà)樹(shù)狀圖法”求出恰好選到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形ABCD中,AB4,∠ABC60°,∠EAF的兩邊分別與射線CB、DC相交于點(diǎn)E、F,且∠EAF60°

1)如圖1,當(dāng)點(diǎn)ECB上任意一點(diǎn)時(shí)(點(diǎn)E不與B、C重合),求證:BECF;

2)如圖2,當(dāng)點(diǎn)ECB的延長(zhǎng)線上時(shí),且∠EAB15°,求點(diǎn)FBC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax2xc的對(duì)稱(chēng)軸為直線x=-1,與x軸交于點(diǎn)A(-4,0)和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)Dm,n)為坐標(biāo)軸中一點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn).

1)求拋物線的解析式;

2)若m0,∠DAB=∠BCO,射線AD與拋物線交于點(diǎn)H,請(qǐng)畫(huà)出圖形,求出點(diǎn)H的坐標(biāo);

3)若n5,m≠1,直線DEDF(不與x軸垂直)都與拋物線只有一個(gè)公共點(diǎn),DEDF分別與對(duì)稱(chēng)軸交于點(diǎn)M,N,點(diǎn)P為對(duì)稱(chēng)軸上(M,N下方)一點(diǎn),當(dāng)PD2PMPN時(shí),請(qǐng)畫(huà)出圖形,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的兩邊AD、AB的長(zhǎng)分別為38,EDC的中點(diǎn),反比例函數(shù)y的圖象經(jīng)過(guò)點(diǎn)E,與AB交于點(diǎn)F

1)若點(diǎn)B坐標(biāo)為(﹣6,0),求圖象經(jīng)過(guò)A、E兩點(diǎn)的一次函數(shù)的表達(dá)式是_____;

2)若AFAE2,則反比例函數(shù)的表達(dá)式是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個(gè)連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實(shí)上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).

(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫(xiě)出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a2n+1,b2n2+2nc2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請(qǐng)證明滿足以上公式的a、bc的數(shù)是一組勾股數(shù).

(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國(guó)古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書(shū)中提到:當(dāng)a(m2n2),bmn,c(m2+n2)(m、n為正整數(shù),mn時(shí),a、bc構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問(wèn)題:已知某直角三角形的邊長(zhǎng)滿足上述勾股數(shù),其中一邊長(zhǎng)為37,且n5,求該直角三角形另兩邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)A順指針旋轉(zhuǎn)到AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1C1處,點(diǎn)B1x軸上,再將AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到A1B1C2的位置,點(diǎn)C2x軸上,將A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到A2B2C2的位置,點(diǎn)A2x軸上,依次進(jìn)行下去,若點(diǎn)A,0)、B0,4),則點(diǎn)B2020的橫坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案