【題目】已知二次函數(shù)y=ax2-5x+c的圖象如圖所示.
(1)試求該二次函數(shù)的解析式和它的圖象的頂點坐標(biāo);
(2)觀察圖象回答,x何值時y的值大于0?
【答案】(1)y=x2-5x+4,頂點坐標(biāo)為(, );(2)x<1或x>4.
【解析】試題分析:(1)由圖知,該二次函數(shù)經(jīng)過(1,0)、(4,0),可將這兩點坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值;然后將所得函數(shù)解析式化為頂點式,從而求出其頂點坐標(biāo);
(2)觀察圖象即可得出結(jié)論.
試題解析:解:(1)根據(jù)二次函數(shù)y=ax2﹣5x+c的圖象可得: ,解得a=1,c=4;所以這個二次函數(shù)的解析式是y=x2﹣5x+4;
∵y=x2﹣5x+4= ,∴它的圖象的頂點坐標(biāo)(, );
(2)觀察圖象可得:當(dāng)x<1或x>4時,y>0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A90°,ABAC.
(1)如圖1,△ABC的角平分線BD,CE交于點Q,請判斷“”是否正確:________(填“是”或“否”);
(2)點P是△ABC所在平面內(nèi)的一點,連接PA,PB,且PB PA.
①如圖2,點P在△ABC內(nèi),∠ABP30°,求∠PAB的大小;
②如圖3,點P在△ABC外,連接PC,設(shè)∠APCα,∠BPCβ,用等式表示α,β之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=x2—1與x軸交于A、B兩點,頂點為C.
(1)求A,B兩點的坐標(biāo);
(2)若點P為拋物線上的一點,且S△APC=2,求點P的坐標(biāo);
(3)如圖2,P(﹣2,﹣2),直線BD交拋物線于D,交y軸于M,連DP交拋物線于E,連BE交y軸于N,求CM ON的值.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為ts.
(1)則BC= cm;
(2)當(dāng)t為何值時,點P在邊AC的垂直平分線上?此時CQ= ;
(3)當(dāng)點Q在邊CA上運動時,直接寫出使△BCQ成為等腰三角形的運動時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(2)如圖②,若∠CAB=60°,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7.
(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)了 度,DE的長度是 ;
(2)BE與DF的關(guān)系如何? 請說明理由.(提示:延長BE交DF于點G)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點E是正方形ABCD中AD邊上的一動點,連結(jié)BE,作∠BEG=∠BEA交CD于G,再以B為圓心作,連結(jié)BG.
(1)求證:EG與相切.
(2)求∠EBG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司要生產(chǎn)若干件新產(chǎn)品,需要加工后才能投放市場.現(xiàn)有紅星和巨星兩個工廠都想加工這批產(chǎn)品,已知紅星廠單獨加工這批產(chǎn)品比巨星廠單獨加工多用20天,紅星廠每天可以加工16個,巨星廠每天可以加工24個.公司需付紅星廠每天加工費80元,巨星廠每天加工費120元.
(1)這家公司要生產(chǎn)多少件新產(chǎn)品?
(2)公司制定產(chǎn)品加工方案如下:可由每個廠家單獨完成,也可由兩個廠共同合作完成.在加工過程中,公司需派一名工程師每天到廠家進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天的補助費5元.請你幫公司選擇一種既省錢又省時的加工方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形OABC放入平面直角坐標(biāo)系xO中,使OA、OC分別落在x、y軸的正半軸上,其中AB=15,對角線AC所在直線解析式為y=﹣x+b,將矩形OABC沿著BE折疊,使點A落在邊OC上的點D處.
(1)求點B的坐標(biāo);
(2)求EA的長度;
(3)點P是y軸上一動點,是否存在點P使得△PBE的周長最小,若存在,請求出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com