【題目】為深化“攜手節(jié)能低碳,共建碧水藍(lán)天”活動(dòng),發(fā)展“低碳經(jīng)濟(jì)”,某單位進(jìn)行技術(shù)革新,讓可再生資源重新利用.今年1月份,再生資源處理量為40噸,從今年11日起,該單位每月再生資源處理量每一個(gè)月將提高10噸.月處理成本(元)與月份(月)之間的關(guān)系可近似地表示為:,每處理一噸再生資源得到的新產(chǎn)品的售價(jià)定為100元.若該單位每月再生資源處理量為(噸),每月的利潤(rùn)為(元).

1)分別求出,的函數(shù)關(guān)系式;

2)在今年內(nèi)該單位哪個(gè)月獲得利潤(rùn)達(dá)到5800元?

【答案】1,;(2)在今年內(nèi)該單位5月份獲得利潤(rùn)達(dá)到5800

【解析】

1)根據(jù)“該單位每月再生資源處理量每一個(gè)月將提高10噸”即可求出yx的函數(shù)關(guān)系式,然后根據(jù)“利潤(rùn)=售價(jià)-成本”即可求出的函數(shù)關(guān)系式;

2)將=5800代入到(1)中關(guān)系式中,然后解一元二次方程即可求出結(jié)論.

解:(1)根據(jù)題意

故每月再生資源處理量(噸)與月份之間的關(guān)系式為:,

;

2)由題意可知:

,

∴在今年內(nèi)該單位5月份獲得利潤(rùn)達(dá)到5800元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A,BC,D四點(diǎn)的坐標(biāo)依次為(00),(62),(8,8),(2,6),若一次函數(shù)ymx6m+2m0)圖象將四邊形ABCD的面積分成13兩部分,則m的值為( 。

A. 4B. ,﹣5C. D. ,﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地質(zhì)量監(jiān)管部門(mén)對(duì)轄區(qū)內(nèi)的甲、乙兩家企業(yè)生產(chǎn)的某同類(lèi)產(chǎn)品進(jìn)行檢查,分別隨機(jī)抽取了50件產(chǎn)品并對(duì)某一項(xiàng)關(guān)鍵質(zhì)量指標(biāo)做檢測(cè),獲得了它們的質(zhì)量指標(biāo)值s,并對(duì)樣本數(shù)據(jù)(質(zhì)量指標(biāo)值s)進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.該質(zhì)量指標(biāo)值對(duì)應(yīng)的產(chǎn)品等級(jí)如下:

質(zhì)量指標(biāo)值

等級(jí)

次品

二等品

一等品

二等品

次品

說(shuō)明:等級(jí)是一等品,二等品為質(zhì)量合格(其中等級(jí)是一等品為質(zhì)量?jī)?yōu)秀).

等級(jí)是次品為質(zhì)量不合格.

b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計(jì)表如下(不完整).

c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下.

甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布表

分組

頻數(shù)

頻率

2

0.04

m

32

n

0.12

0

0.00

合計(jì)

50

1.00

乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖

d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差、方差如下:

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

甲企業(yè)

31.92

32.5

34

15

11.87

乙企業(yè)

31.92

31.5

31

20

15.34

根據(jù)以上信息,回答下列問(wèn)題:

1m的值為_(kāi)_______,n的值為_(kāi)_______.

2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計(jì)該產(chǎn)品質(zhì)量合格的概率為_(kāi)_______;若乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬(wàn)件,估計(jì)質(zhì)量?jī)?yōu)秀的有________萬(wàn)件;

3)根據(jù)圖表數(shù)據(jù),你認(rèn)為_(kāi)_______企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,理由為______________.(從某個(gè)角度說(shuō)明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(24),請(qǐng)解答下列問(wèn)題:

1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1(點(diǎn)A的對(duì)應(yīng)點(diǎn)為A1,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B1,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C1),并寫(xiě)出點(diǎn)A1的坐標(biāo);

2)畫(huà)出△A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的△A2B2C2(點(diǎn)A1的對(duì)應(yīng)點(diǎn)為A2,點(diǎn)B1的對(duì)應(yīng)點(diǎn)為B2,點(diǎn)C1的對(duì)應(yīng)點(diǎn)為C2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三邊長(zhǎng)為,,有以下三個(gè)結(jié)論:(1)以,,為邊長(zhǎng)的三角形一定存在;(2)以,,為邊長(zhǎng)的三角形一定存在;(3)以,,為邊長(zhǎng)的三角形一定存在.其中正確結(jié)論的個(gè)數(shù)是( ).

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,ABC為等腰三角形,DCB延長(zhǎng)線上一點(diǎn),連AD且∠DAC=45°,BD=1,CB=4,則AC長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索發(fā)現(xiàn)】

如圖,是一張直角三角形紙片,B=60°,小明想從中剪出一個(gè)以B為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過(guò)證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為

【拓展應(yīng)用】

如圖,在ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數(shù)式表示)

【靈活應(yīng)用】

如圖,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個(gè)面積最大的矩形(B為所剪出矩形的內(nèi)角),求該矩形的面積.

【實(shí)際應(yīng)用】

如圖,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年4月份,某校九年級(jí)學(xué)生參加了廣州市中考體育考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計(jì)圖(如圖),根據(jù)圖表中的信息解答下列問(wèn)題:

分組

分?jǐn)?shù)段(分)

頻數(shù)

2

5

15

10

1)求全班學(xué)生人數(shù)和的值.

2)直接寫(xiě)出該班學(xué)生的中考體育成績(jī)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段.

3)該班中考體育成績(jī)滿(mǎn)分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流.請(qǐng)用“列表法”或“畫(huà)樹(shù)狀圖法”求出恰好選到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、45;三個(gè)連續(xù)的偶數(shù)中的勾股數(shù)68、10;事實(shí)上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).

(1)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫(xiě)出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a2n+1,b2n2+2n,c2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請(qǐng)證明滿(mǎn)足以上公式的a、b、c的數(shù)是一組勾股數(shù).

(2)然而,世界上第一次給出的勾股數(shù)公式,收集在我國(guó)古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書(shū)中提到:當(dāng)a(m2n2)bmn,c(m2+n2)(m、n為正整數(shù),mn時(shí),a、bc構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問(wèn)題:已知某直角三角形的邊長(zhǎng)滿(mǎn)足上述勾股數(shù),其中一邊長(zhǎng)為37,且n5,求該直角三角形另兩邊的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案