4.(1)如圖1,點P是?ABCD內(nèi)的一點,分別過點B、C、D作AP的垂線BE、CF、DH,垂足分別為E、F、H,猜想BE、CF、DH三者之間的關系,并證明;
(2)如圖2,若點P在?ABCD的外部,△APB的面積為18,△APD的面積為3,求△APC的面積;
(3)如圖3,在(2)的條件下,增加條件:AB=BC,∠APC=ABC=90°,設AP、BP分別于CD相交于點M、N,當DM=CN時,$\frac{CP}{PM}$=$\frac{6\sqrt{2}}{5}$(請直接寫出結(jié)論).

分析 (1)過C作CG⊥BE于G,延長BC交AF于Q,得到四邊形CGEF是矩形,由矩形的性質(zhì)得到EG=CF,根據(jù)平行四邊形的性質(zhì)得到AD=BC,AD∥BC,推出△ADH≌△BCG,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)分別過點B、C、D作AP的垂線BE、CF、DH,垂足分別為E、F、H,由(1)知BE=DH+CF,根據(jù)三角形的面積公式列方程即可得到結(jié)論;
(3)過B作BE⊥AP于E,連接AC,推出四邊形ABCD是正方形,根據(jù)正方形的性質(zhì)得到∠DCA=∠CAB=45°,通過全等三角形得到AM=BN,∠AMD=∠BNC,推出A,C,P,D四點共圓,根據(jù)圓周角定理得到∠DPA=∠ACD=45°,根據(jù)全等三角形的性質(zhì)得到∠CPN=∠DPM=45°,證得△BPE是等腰直角三角形,得到PB=PA=$\sqrt{2}$BE,根據(jù)三角形的面積列方程得到BE=3$\sqrt{2\sqrt{2}}$,根據(jù)三角函數(shù)的定義得到$\frac{PM}{PC}=\frac{PC}{PA}$=$\frac{\frac{5}{\sqrt{\sqrt{2}}}}{6\sqrt{\sqrt{2}}}$=$\frac{5\sqrt{2}}{12}$,即可得到結(jié)論.

解答 解:(1)過C作CG⊥BE于G,延長BC交AF于Q,
∵CF⊥AC,BE⊥AC,
∴四邊形CGEF是矩形,
∴EG=CF,
∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∴∠DAH=∠Q,
∵CG∥AF,
∴∠G=∠BCG,
∴∠DAH=∠BCG,
在△ADH與△BCG中,$\left\{\begin{array}{l}{∠AHD=∠BGC}\\{∠DAH=∠BCG}\\{AD=BC}\end{array}\right.$,
∴△ADH≌△BCG,
∴DH=BG,
∴BE=BG+EG=DH+CF;

(2)分別過點B、C、D作AP的垂線BE、CF、DH,垂足分別為E、F、H,
由(1)知BE=DH+CF,
∵S△ADP=$\frac{1}{2}$AP•DH,S△ABP=$\frac{1}{2}$AP•BE,S△ACP=$\frac{1}{2}$AP•CF,
∴S△ADP+S△ACP=$\frac{1}{2}$AP(DH+CF)=$\frac{1}{2}$AP•BE=S△ABP,
∵△APB的面積為18,△APD的面積為3,
∴S△APC=15;

(3)過B作BE⊥AP于E,連接AC,
∵AB=BC,∠ABC=90°,
∴四邊形ABCD是正方形,
∴∠DCA=∠CAB=45°,
在△ADM與△BCN中,$\left\{\begin{array}{l}{AD=BC}\\{∠ADC=∠BCD=90°}\\{DM=CN}\end{array}\right.$,
∴△ADM≌△BCN,
∴AM=BN,∠AMD=∠BNC,
∴∠PMN=∠PNM,
∴PM=PN,
∴AP=BP,
∵∠ADC=∠APC=90°,
∴A,C,P,D四點共圓,
∴∠DPA=∠ACD=45°,
在△PDM與△PCN中,$\left\{\begin{array}{l}{PM=PN}\\{∠PMD=∠PNC}\\{DM=CN}\end{array}\right.$,
∴△PDM≌△PCN,
∴∠CPN=∠DPM=45°,
∴∠APB=45°,
∴△BPE是等腰直角三角形,
∴PB=PA=$\sqrt{2}$BE,
∵S△ABP=$\frac{1}{2}$AP•BE=$\frac{1}{2}$×$\sqrt{2}$BE•BE=18,
∴BE=3$\sqrt{2\sqrt{2}}$,
∴AP=6$\sqrt{\sqrt{2}}$,
∵AP•PC=30,
∴PC=$\frac{5}{\sqrt{\sqrt{2}}}$,
∵∠PDC=∠PCD=∠PAC,
∴tan∠PCM=tan∠PAC=$\frac{PM}{PC}=\frac{PC}{PA}$=$\frac{\frac{5}{\sqrt{\sqrt{2}}}}{6\sqrt{\sqrt{2}}}$=$\frac{5\sqrt{2}}{12}$,
∴$\frac{PC}{PM}$=$\frac{6\sqrt{2}}{5}$.
故答案為:$\frac{6\sqrt{2}}{5}$.

點評 本題考查了正方形的性質(zhì),平行四邊形的性質(zhì),矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),正確的作出輔助線構(gòu)造全等三角形是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

13.當涂縣大青山桃花節(jié)家喻戶曉.某水果商將每件進價為80元的青山桃按每件100元出售,一天可售出100件.經(jīng)過市場調(diào)查發(fā)現(xiàn),將青山桃每件降低1元,其銷量可增加10件.
(1)該商場經(jīng)營青山桃原來一天可獲利潤多少元?
(2)要使該商場經(jīng)營青山桃一天獲利潤2160元,則每件青山桃應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

14.已知正△ABC的邊長為6,那么能夠完全覆蓋這個正△ABC的最小圓的半徑是2$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

11.如圖,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,還需要添加的條件是AE=AC(只需添加一個條件即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE=$\frac{1}{2}$AC,連接AE交OD于點F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

9.如圖在△ABC中,AB=AC=10,BC=12,點M為BC的中點,MN⊥AC于點N,則MN等于( 。
A.$\frac{12}{5}$B.$\frac{18}{5}$C.$\frac{24}{5}$D.$\frac{32}{5}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

16.在平面直角坐標系中,已知點A(0,2),B(3,0),點C在x軸上,且在點B的左側(cè),若△ABC是等腰三角形,則點C的坐標為(-3,0),($\frac{5}{6}$,0),(3-$\sqrt{13}$,0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

13.計算:$\root{3}{27}$+|-1|=4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

14.學習了統(tǒng)計知識后,小明就本班同學的上學方式進行了一次調(diào)查統(tǒng)計,他通過采集數(shù)據(jù)后,繪制一幅不完整的統(tǒng)計圖(如圖所示).已知騎車的人數(shù)占全班人數(shù)的30%,結(jié)合圖中提供的信息,可得該班步行上學的有8人.

查看答案和解析>>

同步練習冊答案