【題目】如圖,在ABC中,AB=AC,tanACB=2,DABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若BCD的面積為10,則AD的長(zhǎng)為多少?

【答案】5

【解析】

作輔助線構(gòu)建全等三角形和高線DH,設(shè)CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示ACAM的長(zhǎng),根據(jù)三角形面積表示DH的長(zhǎng),證明△ADG≌△CDH,得出DGAG的長(zhǎng)度,即可得出答案.

解:過(guò)DDHBCH,過(guò)AAMBCM,過(guò)DDGAMG,

設(shè)CM=a,

AB=AC,

BC=2CM=2a,

tanACB=2,

=2

AM=2a,

由勾股定理得:AC=a,

SBDC=BCDH=10,

=10

DH=,

∵∠DHM=HMG=MGD=90°,

∴四邊形DHMG為矩形,

∴∠HDG=90°=HDC+CDG,DG=HM,DH=MG,

∵∠ADC=90°=ADG+CDG,

∴∠ADG=CDH,

在△ADG和△CDH中,

,

∴△ADG≌△CDHAAS),

DG=DH=MG=,AG=CH=a+,

AM=AG+MG,

2a=a++,

a2=20,

RtADC中,AD2+CD2=AC2,

AD=CD

2AD2=5a2=100,

AD=(舍),

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),對(duì)稱(chēng)軸與軸交于點(diǎn),點(diǎn)在拋物線上.

1)求直線的解析式.

2)點(diǎn)為直線下方拋物線上的一點(diǎn),連接.當(dāng)的面積最大時(shí),連接,點(diǎn)是線段的中點(diǎn),點(diǎn)是線段上的一點(diǎn),點(diǎn)是線段上的一點(diǎn),求的最小值.

3)點(diǎn)是線段的中點(diǎn),將拋物線軸正方向平移得到新拋物線,經(jīng)過(guò)點(diǎn)的頂點(diǎn)為點(diǎn),在新拋物線的對(duì)稱(chēng)軸上,是否存在點(diǎn),使得為等腰三角形?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

(1求拋物線的解析式;(2過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:矩形中,,,點(diǎn)分別在邊上,直線交矩形對(duì)角線于點(diǎn),將沿直線翻折,點(diǎn)落在點(diǎn)處,且點(diǎn)在射線.

1)如圖1所示,當(dāng)時(shí),求的長(zhǎng);

2)如圖2所示,當(dāng)時(shí),求的長(zhǎng);

3)請(qǐng)寫(xiě)出線段的長(zhǎng)的取值范圍,及當(dāng)的長(zhǎng)最大時(shí)的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為rP是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的限距點(diǎn)的定義如下:若P′為直線PC與⊙C的一個(gè)交點(diǎn),滿足r≤PP′≤2r,則稱(chēng)P′為點(diǎn)P關(guān)于⊙C的限距點(diǎn),如圖為點(diǎn)P及其關(guān)于⊙C的限距點(diǎn)P′的示意圖.

(1)當(dāng)⊙O的半徑為1時(shí).

①分別判斷點(diǎn)M(34),N(,0)T(1,)關(guān)于⊙O的限距點(diǎn)是否存在?若存在,求其坐標(biāo);

②點(diǎn)D的坐標(biāo)為(2,0)DE,DF分別切⊙O于點(diǎn)E,點(diǎn)F,點(diǎn)P在△DEF的邊上.若點(diǎn)P關(guān)于⊙O的限距點(diǎn)P′存在,求點(diǎn)P′的橫坐標(biāo)的取值范圍;

(2)保持(1)DE,F三點(diǎn)不變,點(diǎn)P在△DEF的邊上沿E→F→D→E的方向運(yùn)動(dòng),⊙C的圓心C的坐標(biāo)為(1,0),半徑為r,請(qǐng)從下面兩個(gè)問(wèn)題中任選一個(gè)作答.

問(wèn)題1:若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′存在,且P′隨點(diǎn)P的運(yùn)動(dòng)所形成的路徑長(zhǎng)為πr,則r的最小值為__________.

問(wèn)題2:若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′不存在,則r的取值范圍為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)BC,正方形AOCD的頂點(diǎn)D在第二象限內(nèi),EBC中點(diǎn),OFDE于點(diǎn)F,連結(jié)OE,動(dòng)點(diǎn)PAO上從點(diǎn)A向終點(diǎn)O勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在直線BC上從某點(diǎn)Q1向終點(diǎn)Q2勻速運(yùn)動(dòng),它們同時(shí)到達(dá)終點(diǎn).

1)求點(diǎn)B的坐標(biāo)和OE的長(zhǎng);

2)設(shè)點(diǎn)Q2為(m,n),當(dāng)tanEOF時(shí),求點(diǎn)Q2的坐標(biāo);

3)根據(jù)(2)的條件,當(dāng)點(diǎn)P運(yùn)動(dòng)到AO中點(diǎn)時(shí),點(diǎn)Q恰好與點(diǎn)C重合.

①延長(zhǎng)AD交直線BC于點(diǎn)Q3,當(dāng)點(diǎn)Q在線段Q2Q3上時(shí),設(shè)Q3Qs,APt,求s關(guān)于t的函數(shù)表達(dá)式.

②當(dāng)PQ與△OEF的一邊平行時(shí),求所有滿足條件的AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD是由三個(gè)全等矩形拼成的,ACDE、EF、FG、HG、HB分別交于點(diǎn)P、Q、K、M、N,設(shè)EPQ、GKM、BNC的面積依次為S1S2S3.若S1+S3=30,則S2的值為( ).

A.6B.8

C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某配餐公司有A,B兩種營(yíng)養(yǎng)快餐。一天,公司售出兩種快餐共640份,獲利2160元。兩種快餐的成本價(jià)、銷(xiāo)售價(jià)如下表。

A種快餐

B種快餐

成本價(jià)

5/

6/

銷(xiāo)售價(jià)

8/

10/

1)求該公司這一天銷(xiāo)售A、B兩種快餐各多少份?

2)為擴(kuò)大銷(xiāo)售,公司決定第二天對(duì)一定數(shù)量的A、B兩種快餐同時(shí)舉行降價(jià)促銷(xiāo)活動(dòng)。降價(jià)的AB兩種快餐的數(shù)量均為第一天銷(xiāo)售A、B兩種快餐數(shù)量的2倍,且A種快餐按原銷(xiāo)售價(jià)的九五折出售,若公司要求這些快餐當(dāng)天全部售出后,所獲的利潤(rùn)不少于3280元,那么B種快餐最低可以按原銷(xiāo)售價(jià)打幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示,的直徑,點(diǎn)是半圓上的一動(dòng)點(diǎn)(不與,重合),弦平分,過(guò)點(diǎn)交射線于點(diǎn).

1)求證:相切:

2)若,,求長(zhǎng);

3)若,長(zhǎng)記為,長(zhǎng)記為,求之間的函數(shù)關(guān)系式,并求出的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案